

Sustainable 5G deployment model for Future mobility in the Mediterranean Cross-Border Corridor

Francisco Vázquez Gallego, PhD i2CAT Foundation (Barcelona)

ITS European Congress, May 23, 2023, Lisboa SIS 11: Towards realising seamless automated cross-border mobility

Index

- Project overview
- Achievements
- Business models
- Lessons learned
- Recommendations

Project Overview

- Innovation Action funded by H2020 Research and Innovation programme (H2020-ICT-53-2020)
- Main goal: Evaluate capabilities of 5G technologies (3GPP Rel.16) to meet the requirements of advanced CAM (automotive) and FRMCS (railway) use cases in cross-border scenarios
- 1. Design a cross-border 5G network architecture that can be replicated along European corridors
- 2. Deploy two 5G SA networks (France, Spain) along 65 km of the Mediterranean cross-border corridor between Figueres (Spain) and Perpignan (France)
 - E-15 highway
 - High-speed rail track (incl. 8 km cross-border tunnel)
- 3. Deploy and demonstrate 4 CAM and FRMCS use cases

Use Cases (I)

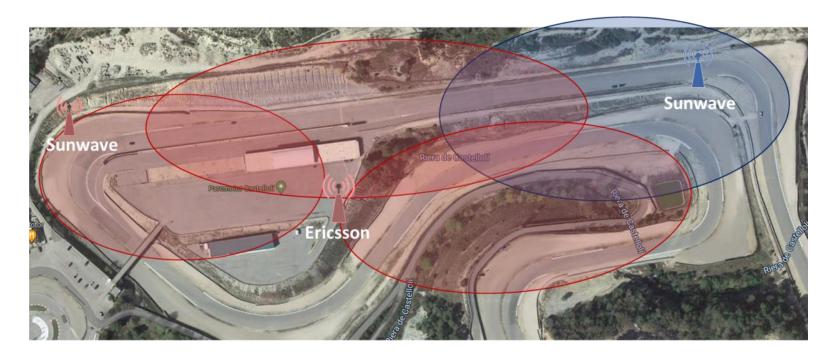
• UC1: Remote driving

- Teleoperation of autonomous vehicle that finds complex traffic situation
- Transmission of video images, sensors data, and teleoperation commands
- <u>Requirements</u>: Very low latency, high data-rate, high reliability, very short interruption time
- UC2: Road Infrastructure Digitalization
 - Vehicles and roadside sensors detect hazards and abnormal traffic situations
 - Traffic Management Center disseminates warnings and traffic recommendations
 - <u>Requirements</u>: Low latency, very high reliability, short interruption time

Use Cases (II)

• UC3: Future Railway Mobile Communications

- Monitoring of sensors on-board the train and detection of obstacles on rail tracks
- Provide high-performance wireless connectivity to passengers
- <u>Requirements</u>: Low latency, very high data rates, short interruption times
- UC4: Follow-Me Infotainment
 - Distribution of high-quality media content to passengers
 - Media services deployed on edge nodes and follow movements of UEs
 - <u>Requirements</u>: Low latency, high data rates, low jitter, short interruption times



Main Challenges

- Existing Home Routed Roaming (HRR) mechanism introduces long interruption times (+ 1 min.) → unfeasible for seamless service continuity → We need roaming optimization techniques
- HRR induces high latency because user data are routed to the home UPF when the UE is in a visited network → We need Local Break-Out (LBO) roaming
- To guarantee service continuity across the border \rightarrow we need cross-border interfaces between...
 - Orchestrators of different MNOs (to orchestrate slicing and deployment of services)
 - MECs of different MNOs (to exchange data of services deployed in MEC)
- Irregular orography and dense vegetation in cross-border area → we need complementary radio technologies to cover 5G NR holes (70 GHz & satellite in remote/isolated areas, C-V2X)

Achievements: Castellolí small-scale test site (I)

- Small-scale test site representing the cross-border scenario (1 Spanish MNO, 1 French MNO)
- Multi-vendor 5G RAN: 1 gNodeB (Ericsson), 2 small cells (SunWave)
- 2 Instances of 5G SA Druid Core

GMED

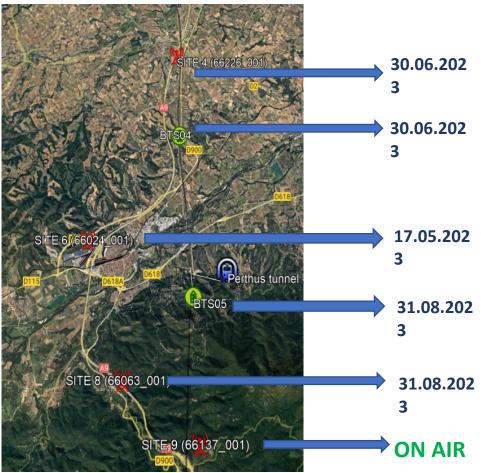
Achievements: Castellolí small-scale test site (II)

- HRR in idle mode with equivalent PLMN and N14 interface* → Interruption time is less than 1 sec
 - ePLMN eliminates the need for blind attachments attempts
 - N14 interface between AMFs of both MNOs
 - Reduces registration time: the AMF of visited network gets the UE context from the source AMF
 - Reduces user plane re-establishment time: the visited network is informed of used UPF and UE IP

Time	Longitude	Latitude	PLMN-id	Tech.	RSRP	Speed	Altitude		
2023.02.01_10.04.52 2023.02.01_10.04.54 2023.02.01_10.04.56 2023.02.01_10.04.58 2023.02.01_10.05.00 2023.02.01_10.05.01	1.6924354 1.6924824 1.6924362 1.6922947 1.6921072 1.6921072	41.592380 41.592272 41.592173 41.592125 41.592150 41.592150	999_99 999_99 999_99 999_99 999_99 999_99 001_01	5G	-107 -107 -104 -107 -107 -101	25 22 20 23 30 30	388 387 387 387 387 386 386 386		Interruption time < 1 sec.
2023.02.01_10.05.02 2023.02.01_10.05.04 2023.02.01_10.05.06 2023.02.01_10.05.08	1.6918982 1.6916944 1.6914850 1.6912986	41.592216 41.592236 41.592197 41.592089	001_01 001_01 001_01 001_01	5G	-101 -103 -95 -96	31 30 32 34	386 386 385 383	'	

 On-going: tests of roaming including radio handover between cross-border gNodeBs* → * Network Reselection Improvements recommended by 5GAA 8

Achievements: Cross-border test site


ON AIR

SPAIN

Business models within the value chain

- Neutral host operator (Cellnex) installs 5G RAN infrastructure along the corridor
- The 5G RAN infrastructure is shared by different MNOs (VDF, Free Mobile)
- Lease model
 - Neutral Host leases the 5G infrastructure for a fee
 - Fees depend on amount of data used, number of customers, and includes service level agreements (SLAs)
- Revenue sharing model
 - Neutral Host and MNOs share revenue generated by 5G infrastructure based on the usage of network by MNO customers
 - Revenue sharing agreement based on % of revenue generated by MNO or a flat fee per customer
- Managed service model
 - Neutral Host provides managed services for the 5G infrastructure (site acquisition, construction, equipment procurement, installation, and maintenance)
 - MNOs pay fixed fee for the managed congrises was sed 2002 \$ LiAlsoar other performance metrics

Lessons learned when deploying the solutions

- Commercial equipment not fully-compliant with 3GPP Release 16 features
 - Most smartphones do not support "testing" (non-commercial) PLMN IDs
 - Limited numbers of UEs support slicing. Those supporting can only be active with 1 slice
 - 5G RAN slicing still not supported by some RAN vendors (e.g., Sunwave)
 - Handover between gNodeBs of different RAN vendors fails due to incompatibility issues
- Roaming mechanisms/optimizations not implemented in most 5G Cores (commercial, opensource)
 - Need to align project timeline and 5G Core manufacturers roadmap (N14 interface, LBO roaming)
- Deployment of orchestrated (dynamic) network slicing in RAN side is still far from being realistic
 - Commercial RAN equipment allows communication with an orchestrator through OSS, but it is expensive, or it is not possible due to cybersecurity issues
 - Most O-RAN equipment that allow direct communication with orchestrators are still unstable
- Irregular orography in corridor requires complex transport networks (multi-hop microwave_links) ITS European Congress, May 23, 2023, Lisboa

Recommendations

- Long time to get permits for trials and demo in highway → Simplify procedures with road authorities
- Drive long distances and need permits for tests in cross-border corridor → Use small-scale test sites for fast deployment and validation (lessons learned can be directly applied in corridor)
- Limited number of tools for measurements of 5G network metrics → Develop platforms for KPI collection, storage, and real-time visualization
- Non available datasets including "5G network metrics and road traffic data" in cross-border scenarios (to train AI for network optimization) → Motivate generation of open-source datasets

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 951947

