
eHDL: Turning eBPF/XDP Programs into Hardware Designs for
the NIC

Alessandro Rivitti
alessandrorivitti@gmail.com

University of Roma Tor Vergata
Axbryd

Rome, Italy

Roberto Bifulco
roberto.bifulco@neclab.eu
NEC Laboratories Europe
Heidelberg, Germany

Angelo Tulumello
tulumello@axbryd.com

University of Roma Tor Vergata
Axbryd

Rome, Italy

Marco Bonola
mbonola@cnit.it

Consorzio Nazionale
Interuniverisitario per le

Telecomunicazioni
Rome, Italy

Salvatore Pontarelli
salvatore.pontarelli@uniroma1.it
Sapienza University of Rome, Italy

Rome, Italy

ABSTRACT
Scaling network packet processing performance to meet the in-
creasing speed of network ports requires software programs to
carefully leverage the network devices’ hardware features. This is
a complex task for network programmers, who need to learn and
deal with the heterogeneity of device architectures, and re-think
their software to leverage them. In this paper we make first steps
to reverse this design process, enabling the automatic generation
of tailored hardware designs starting from a network packet pro-
cessing program. We introduce eHDL, a high-level synthesis tool
that automatically generates hardware pipelines from unmodified
Linux’s eBPF/XDP programs. eHDL is designed to enable software
developers to directly define and implement the hardware functions
they need in the NIC. We prototype eHDL targeting a Xilinx Alveo
U50 FPGA NIC, and evaluate it with a set of 5 eBPF/XDP programs.
Our results show that the generated pipelines are efficient in terms
of required hardware resources, using only 6.5%-13.3% of the FPGA,
and always achieve the line rate forwarding throughput with about
1 microsecond of per-packet forwarding latency. Compared to other
network-specific high-level synthesis tool, eHDL enables software
programmers with no hardware expertise to describe stateful func-
tions that operate on the entire packet data. Compared to alternative
processor-based solutions that perform eBFP/XDP offloading to a
NIC, eHDL provides 10-100x higher throughput.

CCS CONCEPTS
• Networks → Programming interfaces; • Hardware → Hard-
ware description languages and compilation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9918-0/23/03. . . $15.00
https://doi.org/10.1145/3582016.3582035

KEYWORDS
FPGA, HLS, eBPF, Network Programming, Hardware Offloading

ACM Reference Format:
Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello,Marco Bonola, and Sal-
vatore Pontarelli. 2023. eHDL: Turning eBPF/XDP Programs into Hardware
Designs for the NIC. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 3 (ASPLOS ’23), March 25–29, 2023, Vancouver, BC, Canada. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3582016.3582035

1 INTRODUCTION
The per-port network speeds of server’s network interface cards
(NICs) is growing to over 100Gbps, requiring new system approaches
to perform efficient network packet processing without overload-
ing the host system’s CPU. This is driving research in the per-
application specialization of the entire networking subsystem, in-
cluding the software network stacks [10] and NIC hardware [13,
16, 21, 28, 33, 35, 45].

The NIC data plane is a current focus for innovation, with many
established CPU offload/acceleration features [24] being comple-
mented by new programmable functions, such as programmable
packet parsers and forwarding tables [3]. Nonetheless, most NIC
designs are optimized for a selected set of large volume use cases,
such as virtual switch offloading [36]. Other use cases are either not
supported [39], or implementing them to leverage the new features
requires a large ad-hoc engineering effort [7, 12, 29, 37, 38]. As a
matter of fact, the recent large acquisitions of network hardware
vendors in the semiconductor market are usually coupled with
equally big, or bigger, investments on the software stacks required
to leverage the new hardware at best [42].
What if software developers could directly define and implement the
hardware functions they need in the NIC?

We notice that Linux recently included the ability to inject small
programs into the kernel, using the eBPF technology, in order to cus-
tomize the once fixed kernel’s operations [22]. eBPF programs can
be attached in different hooks in the Linux kernel and, among other
uses, programmers use eBPF also to define packet processing tasks.
eXpress Data Path (XDP) [19] is the hook in the earliest networking
driver stage, i.e., before a packet is received by the kernel’s network

208

https://doi.org/10.1145/3582016.3582035
https://doi.org/10.1145/3582016.3582035

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola, and Salvatore Pontarelli

NIC Shell (Corundum)Port

N
IC

eBPF eHDL
1001010010
1100100010
1100100010
1001010010
1100100010
1100100010
1001010010

10010
11001
00010

HW pipeline
generation

eBPF HW
pipeline

H
O

ST

NIC
Shell

Userland
software

Kernel

PCIe

Figure 1: eHDL takes unmodified eBPF programs and gener-
ates tailored hardware to run them at line-rate

stack. For instance, network and service providers use XDP to im-
plement load balancing [11], security [2], monitoring [18], deep
packet inspection [41] and policy enforcement [8].

While purely in software, XDP programs effectively define pro-
cessing tasks that are desired at the NIC level (although within
its driver). We argue that such programs may in fact work as a
formal specification of the needed hardware functions in the NIC,
providing a straightforward interface for software developers to
define their own NIC features.

Working towards such vision, we introduce eHDL, a high-level
synthesis tool to turn eBPF/XDP programs into tailored hardware
designs. eHDL solves three challenging issues: (i) turning a sequen-
tial program description into a (parallel) hardware implementa-
tion; (ii) transparently ensuring correct program operations, e.g.,
data consistency; (iii) and minimization of hardware resources re-
quirements for the generated designs. To address these issues, we
represent unmodified eBPF/XDP programs as a set of sequential
transformations in a pipeline. Each pipeline’s stage transforms the
input packet and the program state, comprising eBPF’s registers
and stack, and provides the transformed data to the next stage.

eHDL uses the above representation to implement a hardware
synthesis process in three steps: (i) program instructions paralleliza-
tion; (ii) hardware primitives mapping; (iii) consistency handling
and optimizations. During parallelization, we group the original
eBPF program’s instructions into schedules with varying degrees
of parallelism, according to the program’s control flow and data
dependencies. Each group corresponds to a pipeline’s stage, and
each stage carries along a full replica of the current packet and
program’s state. We then define a library of hardware primitives
to implement the eBPF instructions, and more complex eBPF data
structures, such as maps (e.g., hash tables). During the second step,
we combine such primitives to implement each stage’s transforma-
tions. The resulting hardware design is a sequential pipeline: at any
point in time there may be as many parallel program executions
(and packets) as the number of stages. eHDL further processes this
initial design during the third step, to include data consistency
handling, and several optimizations that minimize the number of
pipeline stages and hardware resources requirements. To optimize
the pipeline we borrowed some well-know optimization techniques
developed for microprocessor pipelines such as speculative execu-
tion or predication. The resulting hardware has only the features
strictly required by the input program.

We prototype the hardware designs generated by eHDL using a
Xilinx Alveo U50 100Gbps FPGA NIC (See Figure 1). FPGAs are
a type of re-configurable hardware, and FPGA NICs are widely
adopted in datacenter [6], 5G networks [32] and monitoring scenar-
ios [31]. We test eHDL with five eBPF/XDP programs: the Linux’s
eBPF Router and Tunnel programs; an UDP firewall; the network
security monitor Suricata [41]; and a dynamic DNAT. For all these
applications, and when processing packets within the NIC, eHDL
pipelines forward 100Gbps (line rate) with 64B packets, i.e., 148
Million packets per second (Mpps), with a per-packet forwarding
latency of one microsecond. Furthermore, the generated pipelines
use only 6.5%-13.3% of the FPGA hardware resources (Cf. Section 5).
Compared to network-specific high-level synthesis tools, eHDL can
describe stateful functions not supported by past works, and re-
quires no hardware expertise, unlike more expressive, general pur-
pose high-level synthesis tools. Compared to alternative processor-
based solutions that perform eBFP/XDP offloading to a NIC (both in
ASIC [33] and FPGA [5]), eHDL provides 10-100x higher throughput,
depending on the implemented program.
In summary, our contributions are:
• a method to generate hardware pipelines starting from functions
described by eBPF programs;

• eHDL, a High-level Synthesis tool that converts eBPF programs
into RTL hardware descriptions;

• a detailed evaluation of the hardware pipelines generated by
eHDL, including end-to-end tests with unmodified real-world
eBPF programs and microbenchmarks.

2 BACKGROUND AND CONCEPT
Enabling software developers to define their own hardware func-
tions requires to abstract away the hardware design process, making
it declarative. This means that a developer should specify what a
given task does, instead of defining how to do it. A convenient way
to describe a task’s goal is to provide a program that implements the
task, but using a formalism that is familiar to the software developer,
for instance asking the developer to write a C program. While the
software program is in fact telling how to do the task, in the process
it specifies unambiguously its goal. In this sense, past work has
extensively explored the problem of taking a high-level program
and turning it into a hardware design, in the field of High-Level
Synthesis (HLS) [23, 30, 34, 43]. Given this large body of previous
work, why is eHDL needed at all? The main reason is that all the
previous works either limit the supported hardware functions to
simpler (mostly) stateless packet header processing, or they require
the programmer to have hardware design expertise.

The rest of this section presents related work and how eHDL
extends them.

2.1 Related Work
Network HLS. The HLS tools dedicated to networking use cases
usually adopt the P4 language [3], and target both FPGA [20, 43, 44]
and programmable ASIC platforms [17, 25, 40]. P4 is a domain-
specific language specialized to describe packet header parsing and
classification tasks, and was developed in parallel with a reference
hardware architecture called PISA, directly deriving assumptions
and programming models from earlier work on programmable

209

eHDL: Turning eBPF/XDP Programs into Hardware Designs for the NIC ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

switching chips [4]. In fact, all the mentioned tools implement a
PISA-like architecture for the hardware. A PISA-like architecture is
especially suited for simpler packet header processing tasks (header
parsing, classification) but has limited support for functions that
need to keep state across the processing of multiple packets. This
ultimately limits the functions a programmer can specify to mostly
stateless packet classification tasks [29, 38]. For example, in Section 5
we could not implement a dynamic NAT function using the Xilinx
SDNet P4 HLS compiler [44], due to the inability to specify a way
to update the address translation tables required by the function.
General HLS. General purpose HLS tools [23, 30, 34], such as
Xilinx Vitis HLS (Vitis) [46], allow programmers to describe
hardware blocks in languages like C or C++, enabling the use of
advanced language features like loops and classes. This makes
hardware description faster than using traditional RTL languages
(VHDL or Verilog). Furthermore, the tool can usually avoid a clock
cycle-level hardware description, taking care of automatically defin-
ing the best allocation and scheduling strategy to meet area and
throughput constraints [9]. Nonetheless, these tools assume that
the programmer is in fact an expert in hardware design. That is,
they do not abstract away the hardware design process, instead
they provide a more convenient way to describe hardware. For
example, Vitis uses #pragma statements to guide the compiler on
how to handle the program (e.g., define datapath size, unrolling
loops). Likewise, interfacing with the memories and hardware mod-
ules requires a deep knowledge on the possible choices between
datatypes and IN/OUT protocols (e.g., Vitis makes extensive use of
different flavours of the AXI4 protocol). This ultimately requires the
programmer to specify in details the hardware behavior, including
how to handle critical issues such as data consistency.

In short, we point out the main differences between eHDL and
General HLS as follows:

• eHDL builds efficient pipelines that avoid timing closure prob-
lems without using hardware-related pragma/annotations.

• General HLS techniques usually work at data level, while
eHDL works at a higher level of abstraction, i.e. at the packet
level. This simplifies the design of network functions, and it
is the level of abstraction commonly expected by network
function programmers.

• eHDL automatically handles data consistency without (or
with a very small) throughput degradation, implementing
hazard avoidance techniques. Other HLS tools conservatively
lower throughput regardless of the actual hazard, unless
manual handling is performed.

• eHDL synthetizes hardware starting from bytecode (i.e., a
sequence of RISC-like instructions), whereas existing HLS
tools assume access to source code, e.g. C++. This makes the
network programmer able to describe eBPF programs using
different languages, e.g., C or Rust.

We present some examples in appendix A.4 to highlight the differ-
ence in user experience between eHDL and other HLS tools.

2.2 Why eBPF/XDP Helps?
Similarly to general HLS tools, programmers usually write eBPF
programs using a high-level language, such as C. However, un-
like general HLS tools, eBPF programs look like regular software,

1 int example(struct xdp_md *ctx) {

2 void *data_end = (void *)(long)ctx ->data_end;

3 void *data = (void *)(long)ctx ->data;

4 struct ethhdr *eth = data;

5 long *value;

6 int key = 0;

8 if ((data + sizeof (*eth)) > data_end)

9 return XDP_DROP;

11 if (eth ->h_proto == ETH_P_IP)

12 key = 1;

13 else if (eth ->h_proto == ETH_P_IPV6)

14 key = 2;

15 else if (eth ->h_proto == ETH_P_ARP)

16 key = 3;

18 value = bpf_map_lookup_elem (&stats , &key);

19 if (value)

20 __sync_fetch_and_add(value , 1);

22 return XDP_TX;

23 }

Listing 1: A toy eBPF/XDP program example in C

although the eBPF/XDP environment enforces a specific program-
ming model. This model is more constrained than general purpose
languages, yet more flexible than network-specific languages such
as P4. As wewill see, this balance between constraints and flexibility
is what enables eHDL to remove any hardware expertise require-
ments, while supporting unmodified eBPF/XDP programs that can
easily express a large range of network applications. The eBPF lim-
itations work on a twofold level: the computation performed in the
kernel is both time and memory bounded. This corresponds to a
set of limitations that are easily mapped to hardware constraints.
Time-boundedmeans that the number of loops is given at compile
time. In this way backward branches are only allowed in bounded
loops so that they can be unrolled in a hardware pipeline. Similarly,
memory-boundedmeans that there is no dynamic allocation, and
the eBPF virtual machine memory is sharply split into two different
types: (i) one memory is for per-packet operation, it is limited to
the packet payload plus a limited temporary memory that the eBPF
compiler manages as a stack; (ii) a memory that should persist
across the processing of different packets. This memory is provided
by eBPF using the concept of maps. To further clarify this aspect,
we provide an eBPF/XDP program example in Listing 1.

The program counts received packets according to their Ether-
net protocol’s type field. We notice two important aspects: (i) the
program receives as input an xdp_md struct, which contains point-
ers to the packet data buffer (Lines 2-3); (ii) the program accesses
memory that is kept across executions (e.g., flow counters) using
a map data structure (𝑠𝑡𝑎𝑡𝑠 , defined outside the program scope)
and helper functions (Lines 18, 20). Both aspects point to the pro-
gramming model enforced by eBPF/XDP. A new program starts
each time a packet is received, and the input and output of the

210

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola, and Salvatore Pontarelli

1 0: r2 = *(u32 *)(r1 + 4)

2 1: r1 = *(u32 *)(r1 + 0)

3 2: r3 = 0

4 3: *(u32 *)(r10 - 4) = r3

5 [...]

6 8: r2 = *(u8 *)(r1 + 12)

7 9: r1 = *(u8 *)(r1 + 13)

8 10: r1 <<= 8

9 11: r1 |= r2

10 12: if r1 == 34525 goto +4

11 [...]

12 19: r1 = 3

13 20: *(u32 *)(r10 - 4) = r1

14 21: r2 = r10

15 22: r2 += -4

16 23: r1 = 0 ll

17 25: call 1

18 26: r1 = r0

19 27: r0 = 3

20 28: if r1 == 0 goto +2

21 29: r2 = 1

22 30: lock *(u64 *)(r1 + 0) += r2

23 31: exit

Listing 2: eBPF bytecode for the program from Listing 1

program are the packet and related metadata (e.g., the transmit -
XDP_TX - forwarding decision, Line 22). Any access to memory
that persists across program executions uses helper functions and
maps. This provides a way to clearly separate memory areas that
live only within the program scope (e.g., key), from those that per-
sist across different executions (e.g., the data pointed by value),
and from those that should be moved towards next execution steps
(e.g., the packet pointed by data). Furthermore, with the excep-
tion of the reading/writing to maps memory, the program has no
other side-effects or dependencies. Therefore the evolution of each
data variable, including the packet data, is fully specified within
the program itself. In fact, helper functions might introduce side
effects, but they are a fixed set of pre-specified functions with a
fixed interface to exchange data with the eBPF program’s context.
This combination of factors allows us to make several assumptions
about the control flow and data dependencies of the program, and
therefore it makes possible to apply hardware design templates that
can efficiently implement the program in a parallel fashion.

2.3 From eBPF to Hardware Pipelines
To explain how to derive hardware designs from XDP programs,
we need a brief background about eBPF. eBPF programs run in the
Linux kernel on the eBPF virtual machine: a RISC register-machine
with 11 64b general purpose registers, 512B memory stack, and its
own Instruction-Set Architecture (ISA). Registers and stack describe
the entire current program state, whereas persisted state is located
in maps. Programmers write eBPF programs using a high-level
language, e.g. Listing 1, and then compile them to bytecode, i.e., a
sequence of eBPF ISA instructions like the one shown in Listing 2.

T

P

S

RT

Map

T
Packet
FWD

Packet
Queue P

S

R

P

S

R

P

S

R

P

S

R

P

S

R

S RPStack Packet Registers

Figure 2: eHDL represents programs as a sequence of trans-
formations on the packet and program state (register, stack).
Maps are the only interface with external variables.

To turn eBPF bytecode into hardware designs, our idea is to de-
scribe the program in terms of state evolution, where the program’s
state is the combination of the packet data, and eBPF’s registers and
stack. In this abstraction each eBPF instruction becomes a transfor-
mation over the state so defined: an eBPF instruction reads from
one of the memories areas and writes the result in a target memory
area (See Figure 2). For instance, in Listing 2 instructions 8 and
9 move data among memories: they read a value from the packet
memory and copy it in registers 𝑅2 and 𝑅1, respectively. Instruction
22, instead, reads a value from 𝑅2, transforms it performing a SUM
with the constant −4, and writes the result back to 𝑅2.

Therefore, building on this intuition we can describe the pro-
gram as a hardware design that effectively unrolls the program’s
instructions in a sequential pipeline, in which each stage contains
a full copy of the packet data, registers and stack. The eBPF instruc-
tions define connections and operations between the 𝑖-th stage’s
memory areas and the 𝑖 + 1-th stage’s memory areas. Since all the
pipeline stages perform operations in parallel, this hardware design
can potentially process in parallel as many packets as the number
of pipeline’s stages.

2.4 Challenges
The pipelined design described so far introduces two issues.

First, replicating the program state in each stage leads to ineffi-
cient use of hardware resources. For example, each stage requires
over 2KB of memory: at least 1500B to hold a packet, 512B for the
stack, and 88B for the 11 64b registers of the eBPF architecture. A
single program can easily have in the order of hundreds of instruc-
tions and therefore as many stages. In real deployments, it is also
possible that multiple XDP programs are loaded at the same time
(e.g., to handle different types of protocols/traffic). This ultimately
points to a need to reduce the per-stage memory resources and the
overall number of stages.

Second, maps can introduce data consistency issues. In fact, maps
memory can be read and written in different parts of the program.
Since programs are unrolled as a pipeline in hardware, this effec-
tively means that race conditions might arise. In particular, there
are two possible data hazards: (i) a WAR (Write After Read) hazard,
when the write operation erases the existing data too early; and
(ii) a RAW (Read After Write) hazard in which the read operation
reads stale data.

3 DESIGN
We design eHDL to work as a bytecode-to-source compiler. It takes
as input unmodified eBPF bytecode and outputs HDL (VHDL). The
generated HDL is e.g., ready for integration in an FPGA NIC shell,

211

eHDL: Turning eBPF/XDP Programs into Hardware Designs for the NIC ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

4

S T A C KR1 R2 R10

-
P K T

0

R1 R2 R10 S T A C KP K T

r2 = r10 + -4 | r1= 0

Figure 3: Register to register primitive

r2 = *(u8*)(r1 + 12) | r1 = *(u8*)(r1+13)

R1 R2 R10 S T A C KP K T

R1 R2 R10 S T A C KP K T

Figure 4: Load packet to register primi-
tive

R0
Map

Call 1
Handle
Block

R0 R1 R2 S T A C KP K T

S T A C KP K T

Figure 5: Helper functions blocks: 𝑅1-𝑅5
are input parameters, 𝑅0 is the return
value. Optional read/write to the packet
data is supported when needed

which provides access to I/O interfaces and PCIe bus, using the
target FPGA compiler toolchain.

To address the challenges outlined in Section 2, eHDL performs
compile-time analysis and optimization. First, eHDL statically ana-
lyzes the input bytecode to extract any instructions dependencies.
This enables to extract instruction-level parallelism (ILP) and to
track what subset of the program state is actually required at any
point in the execution of the program. In the process, eHDL tracks
the memory areas accessed by the instructions, i.e., Stack, Packet or
Map, and labels each instruction accordingly. Second, eHDL applies
instructions fusion, e.g., using three-operand instructions in place
of two-operand ones. The outcomes of these first steps are: (i) the
program’s Control-Flow Graph (CFG); (ii) the Data-Dependency
Graph (DDG); and (iii) a parallel schedule of execution of the la-
beled program’s instructions. Each row in the schedule contains
instructions that can be executed in parallel and corresponds to a
pipeline’s stage. With the logical program’s pipeline laid out, eHDL
then proceeds to: (i) map logical instructions to hardware "template"
blocks; (ii) enforce the program control flow on the pipeline; (ii)
handle data consistency issues for map memory (§ 4.1); and (iv)
minimize the size of the program state applying packet framing
(§ 4.2) and register pruning (§ 4.3).

The result of these steps is a hardware design that supports
the full eBPF ISA, helper functions and maps, while addressing
the resource minimization and data consistency issues outlined
earlier. The remainder of this section presents the steps to build the
complete pipeline, while we defer to Section 4 the discussion about
maps support and optimization.

3.1 Program Analysis and Instruction Labeling
As a first step, eHDL builds the program’s CFG and DDG. Then,
traversing these two graphs, it inspects every program’s load and
store instructions to identify the type of memory area read/written
by each of them. In fact, eBPF includes three types of memory:
the program’s stack; the packet buffer; map memory. Furthermore,
each map defined within the program has its own dedicated address
space. eHDL assigns a label corresponding to the related memory
area to each instruction. The analysis is performed as follows.

First, eHDL tracks the use of 𝑅10, which is a read-only eBPF reg-
ister that contains the stack pointer of the program. The load/store
instructions reading 𝑅10 for the target memory address are access-
ing the stack. Using the CFG and DDG, eHDL then tracks all the
downstream variables that contain values derived from 𝑅10 (e.g.,
r9 = r10 +10). All the instructions using these values are labeled
as stack memory. Second, eHDL tracks the use of 𝑅1, which is set

at program start to point to the xdp_md struct. The struct contains
the packet buffer address (xdp_md->data) that is usually read at
the beginning of the program. Like in the previous case, eHDL per-
forms register dependency analysis to label instructions that use
the packet buffer address (and derived variables) as packet memory.
Finally, eHDL tracks the use of 𝑅0, which holds a pointer to a specific
map after every call to bpf_map_lookup_elem() . In this case, the
register dependency analysis is used to label instructions with map
memory labels that are specific to each map.

As we will see next, the memory type labels play an important
role during the generation of the hardware pipeline, since they
identify hardware primitives that should be instantiated. Likewise,
they also allow eHDL to identify data hazards.

3.2 Instruction Fusion and Transformation
The direct implementation of eBPF instructions in the pipeline
allows us to easily extend the eBPF ISA to fuse multiple instructions
in one. For instance, we could use three-operand operations in place
of two-operand ones [5]. That is, we can generate a given instruction
when needed.1

More generally, we remark that in a processor implementation
expanding the ISA requires to study the trade-off between the
extended instruction’s resource requirements and the effective
gain (e.g., how often the new instruction is used). For example,
in hXDP [5], a processor tailored for eBPF/XDP programs execu-
tion, the use of 6-bytes load and store instructions is useful only
when the eBPF network function modifies the MAC addresses, oth-
erwise it creates just resources overhead. Instead in eHDL there’s no
trade-off to be evaluated when fusing instructions since we deploy
the associated hardware architecture for the new ISA instructions
only when needed.

3.3 Parallelization
The parallelization step leverages instruction-level parallelism to
execute multiple instructions in the same clock cycle. This has the
potential to reduce the number of stages in the pipeline, since each
stage could execute more than a single instruction. We analyze
instruction-level parallelism using the CFG and DDG: two instruc-
tions can be executed in parallel if they belong to the same control
block, and if they have no data dependencies among each other.

Like when defining new ISA instructions, the ad-hoc generation
of hardware designs of eHDL allows us to avoid trade-off decisions

1The new instructions should not limit the pipeline clock frequency. Aggressive instruc-
tions fusion might require additional mechanisms to balance the instructions-fusion
and the maximum pipeline clock frequency.

212

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola, and Salvatore Pontarelli

that are typical in fixed designs. In the case of parallel executions
of multiple instructions, it is common to trade-off between the
achievable parallelism and the hardware resource requirements.
In particular, providing hardware to execute a small number of
parallel instructions constrains the level of parallelism. In contrast,
more hardware to run instructions in parallel will lead to often idle
(i.e., wasted) subsystems, since control and data dependencies cause
programs to have varying degrees of instruction-level parallelism
during their execution. The hardware pipelines generated by eHDL
are tailored to a specific program, so the degree of parallelism can
grow and shrink in each pipeline’s stage. That is, when a set of
instructions can run in parallel, eHDL expands the stage to run all
of them in that stage. Conversely, if a next instruction cannot be
executed in parallel with any other instruction, eHDL will generate
a pipeline stage that has only the amount of resources required to
run a single instruction.

3.4 Template Hardware Primitives
The parallelization step provides a logical pipeline, which has to
be translated into a corresponding hardware pipeline. We perform
this step mapping each instruction to a set of hardware primitives
that implement the individual transformations. Depending on the
type of instruction (register to register, load/store, call/jmp) and the
instruction label (stack memory, packet memory, map memory),
we instantiate one or more different hardware primitives between
two pipeline’s stages. Next we detail the main primitives.

3.4.1 Simple instructions. Register to register. Instructions that
use immediate values and/or the 𝑅0-𝑅10 registers (e.g., add, sub,
and, etc.) take source registers from the 𝑖-th stage and the desti-
nation register is the corresponding element of the array of eBPF
registers of the (𝑖 + 1)-th stage (See Figure 3 for an example).
Load and store. Instructions that load/store from/to the stack or
packet memory can be implemented as a direct connection between
elements of the respective register arrays. Figure 4 shows the map-
ping of two load instructions. These instructions are implemented
by simply connecting an element of the packet array at the 𝑖-th
stage with the 𝑅1 and 𝑅2 registers of the (𝑖 + 1)-th stage. Store
instructions work in a similar way, connecting the 𝑖-th stage of the
register array with the (𝑖 + 1)-th stage of the packet or stack array.

3.4.2 Helper Functions. Helper functions are outside of the byte-
code scope, and they are defined within each kernel version. This
allows us to efficiently implement each relevant helper function
as a custom hardware block.2 Figure 5 shows an example of the
insertion of a helper function as a dedicated hardware block be-
tween two pipeline’s stages. In particular, we defined a common
hardware interface for all helper functions blocks, mimicking the
eBPF helper function’s software interface: (i) 𝑅1-𝑅5 provide the
input parameters, therefore they feed the corresponding function’s
hardware block; (ii) the function’s output is connected to the next
stage’s𝑅0; (iii) two optional inputs, depending on the specific helper
function called, that can read both the stack and packet frames;
and (iv) an optional output that will write the packet frames if the
helper function writes to the packet buffer. The helper function

2Several helper functions such as bpf_get_smp_processor_id() are meaningful
only for a CPU implementation, we provide a stub for those.

block can be implemented itself in a pipelined manner, with a vari-
able number of stages between input and output depending on the
complexity of the function. We highlight that multiple calls to the
same helper function will generate multiple instances of the same
hardware block, replicated in different pipeline stages in order to
avoid contention on the hardware resources.

3.5 Control Flow Enforcement
Finally, to enforce the program control flow we exploit an approach
similar to predication [27] used in microprocessors. eHDL generates
a set of control signals to enable/disable pipeline’s stages accord-
ing to the result of goto/jump instructions. That is, each packet
traverses all the pipeline stages independently from the specific
control flow path for that packet, however, only enabled stages
actually perform operations, whereas the disabled ones just move
the packet to the next stage.

The parallelization step described in Section 3.3 ensures that
all backward jumps are replaced with forward jumps, in order
to ensure that the entire program can be described as a strictly
forward-feeding pipeline. This is always possible, since eBPF forbids
unbounded loops.

4 CONSISTENCY AND OPTIMIZATIONS
A design generated by eHDL as described in Section 3 still does not
include access to maps, and requires significant hardware resources,
since it replicates packet and program state in each stage. This
section describes how we address maps access and data consistency,
and the packet framing and state pruning techniques we apply to
optimize the pipeline.

We conclude the section providing a complete example of the
hardware design generated for our running example from Listing 1,
and how it can be readily used with FPGA NICs.

4.1 eBPF Maps and Data Consistency
Maps are statically created when the eBPF program is first loaded.
eHDL identifies the maps’ parameters specified at compile time (such
as the number of entries and key size) and instantiates a suitable
hardware block called eHDLmap that implements the interface to-
wards the map memory. Here, notice that maps are accessed both
with the helper functions and with load/store instructions targeting
map memory.

Two specific helper functions perform lookups and updates to
the maps’ entries. These differ from helpers described in §3.4.2,
since their interface with the pipeline’s stages includes: 𝑅1 and a
portion of the stack, which is used as input (to store the key value
for the lookup/update); and 𝑅0, which is used as output. Another
key difference is that multiple calls of these helper functions to
access the same map correspond to multiple accesses to the same
hardware block. That is, while with other helper functions the hard-
ware block is always replicated for multiple function calls, helper
functions accessing the same map share a common hardware block
across pipeline’s stages. Thus, all the instances of the eHDLmap block
for a given map are in fact interfaced with a single memory area.
Load and Store instructions that access a map memory are also con-
nected to the corresponding eHDLmap block. Our current hardware
primitive supports multiple read-write channels to enable parallel

213

eHDL: Turning eBPF/XDP Programs into Hardware Designs for the NIC ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

P K T

Map

R0 R1 R2

address
data

write
buffer

address

data

stage i

stage i+1

stage i+2

stage i+3

pkt4 ()

pkt3 (♡)

pkt2 (♢)

pkt1 ()

P K T

P K T

P K T

R0 R1 R2

R0 R1 R2

R0 R1 R2

Figure 6: WAR: pkt4 writes in the location read by pkt1

Map

R0 R1 R2

address
data

1
+

address

data

Flush
Evaluation

Block

pkt4 (♡)

pkt3 ()

pkt2 (♢)

pkt1 ()

stage i

stage i+1

stage i+2

stage i+3

R0 R1 R2

R0 R1 R2

R0 R1 R2

Figure 7: RAW: pkt4 reads the same location in which pkt2
writes

access to the memory from different pipeline stages. Nonetheless,
in all the examined use cases at most two memory channels to the
same map were needed. It is important to notice that in all cases
the memory area also supports a suitable interface towards the
host machine, to enable communication with the host using the
standard eBPF tools, e.g., to read/write to the map from userspace.
Data consistency. As discussed already in Section 2, WAR and
RAW data hazard might occur whenever multiple pipeline stages
access the same map memory. However, the probability of facing
actual data consistency issues vary significantly. In particular, we
observe that there are two main uses of eBPF maps, in line with
classical approaches in designing network functions [38]. In a first
case, the eBPF map stores data related to a network flow, i.e., flow
state. That is, the key that identifies the corresponding map entry
in this case is a flow identifier. This case creates data hazards, but
only when packets belonging to the same flow are processed in
short sequence within the pipeline. In a second case, the eBPF
maps are accessed with keys that are not related to a network flow
identifier, i.e., global state. For instance, this is the case when an
eBPF program keeps counters, like in the example from Listing 1. In
this case, the data hazards may happen with high probability, since
the pipeline often accesses the same few entries, and potentially
for each processed packet.

4.1.1 Handling WAR. WAR hazards are handled in both cases with
the same approach. We describe our solution using the example
shown in Figure 6. There are four packets traversing in the pipeline,
and the packets belong to three different flows (♣,♥ and ♦) each
accessing a different memory address. Since pkt2 and pkt4 belong to
the same flow (♣), they access the samememory address. This would
cause a WAR hazard: the (𝑖 + 3)-th stage will read the value just
written by the processing happening at the earlier (𝑖)-th stage. To
prevent this issue, eHDL adds some additional registers (the shaded
box in Figure 6) that delay the actual writing of the value computed
in the 𝑖-th pipeline stage, until the reading of the (𝑖 + 3)-th stage is
finalized.

4.1.2 Handling RAW. Handling RAW hazards can significantly
benefit from the distinction between the flow and global state cases.
In fact, in the first case we flush the pipeline to maintain consistency,
This approach is similar to speculative execution, in which the
misspeculation corresponds to the case in which multiple packets

belong to the same flow. In the second case we utilize specific atomic
operators.
Per-flow state. In Figure 7 we show a RAW hazard in the case of
a per-flow eBPF map entry. In this case, the problem is due to the
reading of the value from the reading stage (the (𝑖)-th stage), before
writing the updated value from the writing stage (the (𝑖 + 2)-th).
Whenever this hazard is detected, we flush the pipeline discard-
ing any intermediate computation. The detection of this hazard is
done by a dedicated hardware block, the Flush Evaluation Block
(red block in Figure 7). The block stores the sequence of memory
addresses of unconfirmed read operations and, if one of these ad-
dresses is written, it issues a pipeline flush signal. In the example,
the Flush Evaluation Block stores the addresses corresponding
to pkt3 and pkt4 (say the ♥ and ♣ addresses) and compares these
values with the address to be written by pkt2 (♣) in the writing
stage. Since the addresses for pkt2 and pkt4 are the same, a hazard
is detected.

Flushing the pipeline requires to repeat the execution of all the
packets from the beginning of the pipeline up to the read stage,
which reduces the pipeline throughput. Thus, we evaluated alterna-
tive approaches, such as the one adopted by FlowBlaze [38], based
on pipeline stalling. In place of flushing, stalling introduces pipeline
"bubbles" while waiting for the memory write. Unfortunately, this
requires to identify the hazard during the reading stage, which is
only possible if the writing address can be inferred in advance. We
therefore decided to keep our approach with flushing as a single
generic solution. Nonetheless, as we will show in Section 5, this
does not significantly affect the throughput performance in real
cases. In fact, in practical cases the probability of a flush is relatively
low, which allows the pipeline to amortize the clock cycles spent to
repeat flushed computations.
Global state.When programs use maps to access a value with high
frequency, flushing the pipeline severely degrades throughput. This
type of access to maps introduces performance issues also in the
software implementation of eBPF, in which case the update requires
synchronizing memory accesses across the multiple CPU caches.
Nonetheless, in many use cases this type of access pattern is typical
to update variables such as counters, e.g., to collect aggregated
traffic statistics. For such cases, to avoid expensive locking of the
memory areas eBPF introduces atomic operations.3 An example
3https://reviews.llvm.org/D72184

214

https://reviews.llvm.org/D72184

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola, and Salvatore Pontarelli

P

K

T

R1

R2

<< |= == 1 2 3

S S

0

R0 R0

R1

R0

R1

3 R0

R1

R21

R0

R1

R2

R1 R1 R1 R1 R1

4

R1

R2

R1 R1 R1 R1

R10 -

Ato
mic

-

4
Disable signals

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10 Stage 11 Stage 12 Stage 13 Stage 14 Stage 15 Stage 16 Stage 17 Stage 18 Stage 19 Stage 20

Call 1
Handle
Block

Map

r2=*(u8*)(r1+12)

r1=*(u8*)(r1+13)

r1<<=8

r1|=r2

if r1==34525

goto +5

if r1==2054

goto +5

if r1!=2048

goto +6

r1=1

goto +3 r1=2 goto +1 r1=3 call 1 r1=r0

r0=3

r2=1 exit

(u32)(r10-4)=r1

r1=0

r2=r10-4

if r1==0

goto +2

lock *(u64*)r1 +=r2

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

P

K

T

!=== ==

Figure 8: Design generated by eHDL for the input program bytecode reported in Listing 2

of such operations is in Listing 1, Line 22. Since programmers
already use this construct to improve the performance of their
eBPF programs, we can readily re-use these as is, and introduce
specialized hardware primitives that perform atomic operations on
map memory in an efficient manner. That is, this block performs
key-based lookup and value update in place, without copying back
the data to the pipeline’s register and stack memories. Conceptually,
these atomic operation primitives are similar to the ones proposed
in [40], for atomic operations on the registers of a switch data plane.

4.1.3 Multiple Hazard Occurences. Whenever multiple reads to
a single MAP are requested by a program, the buffer deployed to
overcome theWAR hazard is long enough to enable the last pipeline
stage that requests a read to actually perform a read on the previous
value. This is an easy solution with a relatively low impact on area
utilization. However, for what concerns RAW hazards, in order to
enable multiple writes to be performed after a MAP read we need
to instantiate a Flush Evaluation Block for every single map write
instruction. In this way, we can evaluate the hazards separately and
whenever a need for flushing is requested by either block, the pipe
will be flushed up to the requested pipeline stage. Of course, the
area utilization for this approach is not fully optimized however we
found that in the use cases evaluated, this need for multiple Flush
Evaluation Blocks for a single map read was never needed.

4.2 Packet Framing
In the generated pipeline as described so far, we assume that the
entire packet buffer is propagated in each stage. In practice, doing so
would be wasteful. In fact, a large share of network packets is much
smaller than the maximum packet size observed in the network. For
instance, in networks with a maximum packet size of about 1500B,
it is common to observe much smaller average packet sizes at 700B
or less. This is a common problem in any network hardware design,
and the typical solution is to chunk the packet in frames of smaller
size [48]. For example, typical frame sizes are 32B [47], and 64B [15].
In the designs generated by eHDL, framing the packet introduces
an additional factor of complexity, since an eBPF program can
theoretically access any part of the packet at any time. That is, the
processing performed by one of the pipeline’s stages might need to

access a packet frame that is located in a different pipeline stage.
To address the issue, eHDL enables connections between a stage’s
register and the packet frame located in previous stages. Here,
it should be noted that the frames located in previous stages are
simply propagated through the pipeline, since such stages are in fact
disabled. That is, processing in the pipeline advances synchronously
with the first packet’s frame. Also in this case, the used approach is
similar to a technique used in microprocessor pipelines, 𝑖 .𝑒 . stage
bypassing: the data coming from previous stages are anticipated to
the stage of the first frame of a packet to mantain data consistency.

A special case is when the frame to be accessed is not yet in
the pipeline by the time the processing requires it. For example,
this may happen if an instruction at the beginning of the program
accesses data at the end of a large packet. eHDL handles these cases
by introducing synthetic NOP stages, with the only goal of making
the pipeline longer.

It is worth noting that actual network functions rarely go deep
into the payload, so the hardware complexity is easy to manage.
During the development of eHDL, we discussed the possibility
of deploying elastic buffers to face the problem of accessing the
entirety of the packet within each pipeline stage, however we did
not develop such a solution since we didn’t see concrete use cases
in which we need to use this block.

4.3 State Pruning
Program state, i.e., registers and stack, is also replicated in each
stage. However, at any point the program uses only a subset of
the registers and stack. This is connected to the lifetime of the
defined variables. For example, in Listing 2, 𝑟2 is used last time in
instruction 11, and then re-assigned in instruction 21. Therefore,
between instructions 11 and 22, there is no need to keep the value
of 𝑟2. eHDL performs a similar analysis for all the registers and the
stack addresses. The resulting pipeline will have only the required
registers and stack memory in each of the stages.

4.4 Pipeline Example
In Figure 8 we show the high-level hardware design generated by
eHDL for the program from Listing 1. A few things can be pointed

215

eHDL: Turning eBPF/XDP Programs into Hardware Designs for the NIC ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 1: Applications used for evaluation

Program Description
Simple firewall checks the bidirectional connectivity for UDP flows
Tunnel parse pkt up to L4, encapsulate and XDP_TX
Router parse pkt headers up to IP, look up in routing table

and forward (redirect)
DNAT an application performing dynamic source NAT
Suricata an Intrusion Detection System (IDS) [41]

out. First, instructions corresponding to program Lines 8-9 are not
present, since they are used to check that memory accesses are
always performed within the packet data length. This check is
readily implemented in hardware when accessing the packet frame,
and it can be therefore safely skipped. Second, the instruction-
level parallelism is at most two, and only few instructions can be
actually parallelized (See stages 1, 11, and 16). This is because our
running example is heavy on control flow, as demonstrated by the
several disable signals (the red bars in Figure) corresponding to
the if statements in the program. Finally, we can observe that
state pruning effectively reduces the number of registers and stack
memory propagated throughout the pipeline. Most of the stages (9)
only have a single 8B register, 6 stages have 2 registers and only
one stage has 3 registers. Without pruning, each stage would have
11 registers. Similarly, stack memory is only present in 2 stages out
of 20, and it is only big enough to hold the key required for the
lookup in the array map (4B in place of 512B). All combined, the
largest of the stages only requires 88B of memory (assuming 64B
packet frame + 24B for 3 registers) in place of the over 2KB it would
have required without packet framing and state pruning.

4.5 Integration in the NIC Shell
eHDL integrates automatically the generated pipeline in a target
NIC shell, which connects to the system I/O (e.g., network ports
and to the host’s PCIe bus). Without loss of generality, we target
the Corundum 100 Gbps NIC [15] for our prototype. We remark
that eHDL wraps the generated designs into a set of asynchronous
FIFO queues, in order to decouple them from the shell, giving the
option to use different clock frequencies for the shell (e.g., clocked
at 250 MHz) and the pipeline.

5 EVALUATION
We evaluate eHDLmeasuring the performance (throughput, latency,
energy) of the generated hardware designs, and their resource re-
quirements, and performing a set of microbenchmarks to assess
the impact of the design decisions discussed throughout the paper.
Finally, we qualitatively compare the eHDL programming experi-
ence with the one provided by HLS tools, when implementing the
program from Listing 1.
Testbed. eHDL designs are implemented targeting a 100Gbps Xilinx
ALVEO U50 NIC. To test the system end-to-end we use two directly
connected machines. One is equipped with a 100Gbps Mellanox
ConnectX-5 NIC, and runs a DPDK traffic generator capable of
generating line rate traffic with 64B packets (i.e., 148 Mpps). The
other machine hosts the Xilinx Alveo U50, or an NVIDIA Bluefield2
DPU, depending on the test. In all tests we measure the perfor-
mance at the traffic generator system, counting received packets

for throughput tests and using hardware timestamping for latency
tests. Depending on the test, we vary the number of generated flows
from 1 to over 100k. For some microbenchmarks we instrument
ad-hoc hardware counters into the FPGA. All our tests measure the
performance of applications running entirely within the NIC, and
do not transfer packets to the host system. In fact, in that case the
PCIe bus transfers and the operating system NIC’s driver would
become the bottlenecks.
Comparison terms. We compare hardware designs generated by
eHDL against those generated by the Xilinx SDNet P4 High-level
Synthesis compiler [44], which synthesizes hardware pipelines from
P4 programs [3]. The hardware pipelines target the same Xilinx
Alveo U50 used for eHDL. We also compare against running eBPF
programs on hXDP [5] and on an NVIDIA Bluefield2. To the best
of our knowledge, these are the currently available solutions that
support running full eBPF programs on the NIC, and they are both
processor-based. We use the latest version of hXDP, synthetized on
the same Alveo U50 used for eHDL. hXDP implements a single core,
2 lanes Very-Long-Instruction-Word processor, clocked at 250MHz.
The Bluefield2 (Bf2) combines two main subsystems: a switching
data plane based on the Mellanox ConnectX6 architecture; and
a battery of 8 general purpose Arm A72 cores running at up to
2.75GHz. The ConnectX6 receives the packets from the network
ports and can forward them directly to the host system, like a
regular NIC, or it can re-direct them to the Arm CPUs. In the latter
configuration, the Bf2 can run eBPF programs directly on the NIC,
leveraging the Arm CPU.
Test Applications. We use 5 unmodified real-world eBPF applica-
tions as input to eHDL. We summarize them in Table 1. The Tunnel
and Router applications are the Linux’s XDP applications included
with the kernel sources (tx_iptunnel and router_ipv4, respec-
tively). Both applications use global state to keep aggregated traf-
fic statistics. Simple Firewall is an application that tracks the
bi-directional connection establishment for flows defined by the
5-tuple. DNAT is an implementation of a dynamic source Network-
Address-Translation application. On the first packet of a flow, the
DNAT selects a new port/address combination. Any following
packet belonging to the bi-directional flow gets the source/des-
tination address/port accordingly translated. The port selection is
performed directly in the data plane, requiring read/write access
to the eBPF maps. Suricata is an open source Network Intrusion
Detection System, which generates eBPF programs to filter traffic as
early as possible [41]. In addition to parsing packets and checking
access control lists, Suricata keeps also track of aggregated traffic
statistics using global state. To compare against SDNet, we port the
eBPF programs for Simple Firewall, Router, Tunnel and Suricata to
equivalent P4 implementations. We could not implement the DNAT
in P4 [3], since there is no obvious way to define the dynamic port
selection within the data plane with SDNet P4.

5.1 Throughput and Latency
Figure 9.a (notice the log scale) shows the throughput measured in
our tests when generating 10k flows and 148Mpps (100Gbps). All
the hardware pipelines generated by eHDL can forward 148Mpps.
SDNet can also forward 148Mpps, however it cannot implement
the DNAT. hXDP can only forward 0.9-5.4Mpps depending on the

216

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola, and Salvatore Pontarelli

Firewall Router Tunnel DNAT Suricata

M
p

p
s

101

102
eHDL hXDP Bf2 4c
SDNet Bf2 1c

(a) Throughput

eHDL hXDP

Firewall Router Tunnel DNAT Suricata

N
an

o
se

co
n

d
s

1400

1200

1000

800

600

400

200

0

(b) Latency

eHDL hXDP

Firewall Router Tunnel DNAT Suricata

N
u

m
b

er
o

f
in

st
ru

ct
io

n
s 200

150

100

50

0

Stages hXDP Instr. Original Instr.

(c) Instructions vs Number of Stages

Figure 9: Performance results and comparison between number of eHDL pipelines’ stages and eBPF instructions. Bf2 is an
NVIDIA Bluefield2 using 1 (1c) or 4 (4c) of its Arm cores. eHDL provides 10-100x higher throughput than hXDP and Bf2, and it is
more flexible than SDNet P4, which for instance cannot implement DNAT

Firewall Router Tunnel DNAT Suricata

LU
T(

%
)

0.00

0.05

0.10

0.15

0.25
eHDL hXDP SDNet

0.20

(a) LUTs

FF
(%

)

0.00

0.05

0.10

0.15

0.25

0.20

0.30

Firewall Router Tunnel DNAT Suricata

eHDL hXDP SDNet

(b) Flip-Flop

B
R

A
M

(%
)

0.0

0.1

0.2

0.3

0.4

eHDL hXDP SDNet

Firewall Router Tunnel DNAT Suricata

(c) BRAM

Figure 10: FPGA resource requirements (on Xilinx Alveo U50). eHDL designs are comparable or more efficient than hXDP, and
significantly more efficient (2-4 times lower requirements) than SDNet. This result is due to eHDL’s ability to tailor the design to
the use case. The hXDP resources are the same for all use cases, since it is a processor-based design

use case. The Bf2 is comparable to hXDP when using a single Arm
cores (Bf2 1c), or slightly faster, growing linearly to over 10Mpps
when using multiple cores (Bf2 4c shows the result for 4 cores).

Figure 9.b shows the forwarding latency only for eHDL pipelines
and hXDP, for readability, since their latency results are 10x lower
than those of the Bf2, and thus directly comparable among each
other. In both cases, the latency is remarkably low for all use cases,
at about 1 microsecond.

The reported latency variation is explained looking at Figure 9.c,
where we report the number of stages for the eHDL pipelines, vs the
number of instructions of hXDP, and of the original bytecode. The
use cases with less pipeline stages experience lower latency. We can
also observe that both eHDL and hXDP can reduce the number of
original instructions, sometimes by about 50%. The latency of eHDL
and hXDP is in fact comparable since they both leverage instruction-
level parallelism in the same way. The small differences between
number of stages and number of hXDP instructions are due to
some architecture specific variations (e.g., eHDL might add stages
to implement helper functions in-line). However, the throughput
of eHDL pipelines is much higher since packets are processed in
parallel within the pipeline, whereas packets in hXDP are processed
one by one. We want to remark that we limited the testbed to a
250MHz frequency to match the 100Gbps scenario. We believe that
with extensive optimization higher frequencies are easily achievable
and thus higher rates too. Anyway, when optimizing to increase the
frequency there is the risk of reducing usability. In fact, excessive

optimization might lead to cases in which timing closure is not
always possible for the generated hardware.

5.2 Hardware Resources and Energy
Figure 10 shows the FPGA resources occupation for logic (LUTs) (a),
Flip-Flops (b) and BRAM (c). All the results include the Corundum
resources. eHDL requirements are roughly comparable to hXDP, and
significantly lower than those of SDNet-generated designs. This
is not surprising since SDNet instantiates generic programmable
parser and lookup tables [26]. eHDL generates instead designs that
are strictly tailored to the input program, hence very efficient.

We then measure the overall power absorption of the machine
under test during throughput tests, and for one minute of test,
while the machine’s CPU was idle in lowest power state. Pairing
this with the throughput results from Figure 9 helps in getting a
rough estimate of energy requirements, even if we have no visibility
in all NIC subsystems. We measured on average 80-85W when the
system under test hosts the Xilinx Alveo U50, with little variation
when the FPGA is flashed with eHDL, hXDP or SDNet hardware
designs. The same machine consumes 100-105W when hosting the
Bf2.

5.3 Impact of Flushing
eHDL pipelines are clocked at 250MHz and can forward a packet in
each clock-cycle, achieving a theoretical 250Mpps throughput. This
makes it hard to see the impact of flushing in the end-to-end tests

217

eHDL: Turning eBPF/XDP Programs into Hardware Designs for the NIC ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 2: Packet loss and number of flush events for a leaky
bucket application with different real-world traces

Trace # lost packets # flushes
Caida 0 350k/sec
Mawi 0 124k/sec

presented so far. We therefore developed an application that has a
high chance of performing flushes, and instrumented the generated
pipeline with counters for flush events. The application is a Leaky
Bucket, which needs to track the time of reception of each packet to
check the packet forwarding rate. This leads to RAW hazards that
cannot be solved with atomic operations and thus to flush events.
We then used traffic traces to test the system under realistic flow dis-
tributions. We use two traces: one from CAIDA [1] (caida_20190117-
134900); and one fromMAWI [14] (mawi_202103221400). The traces
have an average packet size of 411B and 573B, and 184’305 and
163’697 5-tuple flows, respectively. Table 2 reports the results in
terms of number of lost packets and number of flushes per second,
when replying the traces at 100Gbps. Also in this case and as ex-
pected, the eHDL pipeline does not drop any packets. The combined
effect of larger than minimum packet sizes and a realistic distribu-
tion of flows is such that the probability of flushing is low. In fact,
we measure a relatively low number of pipeline flush events per
second (in any case below 350k). For reference, when replicating
the CAIDA trace, but changing the eBPF program to access always
the same map address (i.e., like if all the packets were part of a
single flow), the maximum achieved throughput degraded from the
29Mpps to 12Mpps (i.e., about 40Gbps), showing the effectiveness of
our data hazard handling method. For further analysis, we present
a detailed analytical study of flushing in Appendix.

5.4 Impact of State Pruning
We show the impact of the state pruning optimizations, using the
pipeline from Figure 8 and comparing it to a pipeline generated for
the same program, but with state pruning disabled. In these results,
we count only the hardware resources required by the pipeline (i.e.,
without the overhead of Corundum). The pipeline without state
pruning requires 46%, 66% and 123% more LUTs, Flip-Flops and
BRAM than the pipeline with pruning enabled, respectively.

5.5 Programming Experience
Finally, we describe the differences between the eHDL and Vitis
HLS workflows, to clarify why current HLS tools are not a suitable
solution for network function developers.

Coding the program in Listing 1 to make it work with Vitis HLS
required a hardware expert to define I/O interfaces and pragmas.
We report the complete source code in Appendix, while here we
point out to some examples.

The function inputs are of type stream<axiWord>, i.e., the pro-
grammer is required to implement state machines to reconstruct
the packet data that is chunked in frames, and be knowledgeable
with the AXI stream protocol, e.g., handling control signals such as
valid and ready. On the contrary, with eHDL it is possible to work
directly at packet level. Variables need to be annotated with several
pragmas, such as:

#pragma interface mode=axis port=ethStreamIn
#pragma HLS STREAM variable=key depth=256

These tell how to connect to other modules within the hardware
design, and how to drive specific hardware design choices, such as
type of memory resource and datapath width. The implications of
these choices require deep hardware expertise. In contrast, with
eHDL the code from Listing 1 is all that is needed.

In terms of toolchain, eHDL starts from the eBPF bytecode gener-
ated by the compilation of the program in Listing 1, and generates
the firmware ready to be loaded on the Xilinx U50. In contrast, with
Vitis HLS the programmer has to: (i) (re)implement the network
function in C++ using the proper hardware annotations; (ii) gener-
ate an IPcore using HLS; (iii) manually connect the IPcore to the
NIC shell to implement the end-to-end FPGA hardware design.

6 DISCUSSION AND LIMITATIONS
Software and hardware programming. eHDL enables software
network programmers to define their own hardware. For instance,
accelerating Suricata took us about 1h, mostly spent in hardware
synthesis. eHDL could readily generate the hardware design from
the cloned Suricata’s GIT repository, in few seconds, giving us an
FPGA NIC-accelerated Suricata appliance. Currently, technology
vendors need months of development to achieve the same, e.g., [31].
Here, it is worthy of notice that even the interface with the host
system stays unchanged: programmer receive network data using
sockets (e.g, of the type AF_XDP for fast packet processing); and
they can update the memory hosted on the NIC using the standard
eBPF map interface towards user space.

For what concerns the interactions with the host system, we did
not find cases in which the eBPF map host accesses significantly
affect data plane performance. We observe two most common kinds
of interactions between the host system and eBPF maps:

• The data plane writes on the maps, the host only reads them.
This is typical of monitoring applications (e.g., to fetch statis-
tics). The map reads occur at a much lower frequency than
accesses required for packet processing; furthermore, FPGAs
can easily implement memories with multiple read ports to
fully parallelize reads.

• The host writes maps, the data plane only reads them. This
is the case of applications such as Access Control Lists and
Routing, which usemaps that host policies (e.g., a forwarding
table). Also in these applications, the write access frequency
is orders of magnitude lower than the map read frequency
required by data plane processing, and thus the performance
impact is negligible.

Reasoning for pipeline packet-streaming. The level of optimiza-
tion that we manage to achieve when analyzing the eBPF program
allows us to deploy the pipeline architecture as discussed. Nonethe-
less, FPGA experts might find the generated pipelines similar to
an instance of a complex shifter register, with significant FPGA
resource requirements. In practice, as we discussed in Section 5.4,
our optimization is able to prune the number of used registers sig-
nificantly. Furthermore, the target architecture (the FPGA) has a
huge number of registers and is able to use a single LUT as a shift
register, further reducing resource usage. If resources are still a
concern, a simple technique to reduce them would be to indirectly

218

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola, and Salvatore Pontarelli

index several FPGA block RAMs, reducing the number of registers
used for the shifter register. However, after the first tests, we real-
ized that also without these solutions, eHDL generated relatively
resource-efficient pipelines. In addition, it is interesting to high-
light that one of the targets of our work is to face the worst case
of minimum packet size. This is a classic worst-case in network
applications. For this scenario, we need to access the packet data
and state of multiple packets. With our solution eHDL is able to
process one minimum packet per pipeline stage (more than 100
packets in parallel in the longer pipelines). We suspect that indirect
access to data would instead fragment the memories so much that
the FPGA synthesis would map them into registers, thereby obtain-
ing a similar (or worse) final result, i.e., using many of the FPGA
registers.
Comparison with SIMD architectures. One alternative design
option to scale throughput could be a parallel, SIMD-style archi-
tecture, such as a multi-core version of hXDP. Nonetheless, this
approach has several drawbacks. SIMD processing of several pack-
ets in parallel requires processed packets to follow the same control
path. In general, this requires batching packets that can be pro-
cessed in parallel. Even assuming that a solution to implement
proper batching at packet processing speeds is available, batch-
ing still adds processing latency and increases buffer size (there
would be a need to keep multiple batches to hold the packets re-
quiring the same type of processing). These are major drawbacks
in high performance network devices. Furthermore, in order to
achieve a 10x throughput improvement using a design built with a
multi-core hXDP approach, ignoring cross-core memory synchro-
nization issues for simplicity, and assuming a perfect linear scaling,
we would need 10 hXDP cores. This would translate to about 10x
larger hardware resource requirements than eHDL.
Limitations and open issues. eHDL provides the flexibility of
eBPF and the performance of specialized hardware, but there are
still limitations and open issues.
Target Platform. eHDL defines a hardware design at the HDL level.
This means that the design is readily suitable for existing FPGA
targets. It is still unclear if defining hardware features for NICs
using eBPF would be a valuable tool also for chip designers, in
addition to FPGA users.
Accessing host’s maps. While eHDL designs are able to access host’s
memory and maps located in the Linux environment, doing so
comes with a performance penalty due to data movements between
NIC and host system, e.g., PCIe transactions. Therefore, while pro-
grams run unchanged on e.g., an FPGA NICs, operators need to be
aware of the accessed maps location, when performing program de-
ployments. Automatically managing and orchestrating the runtime
of programs on heterogeneous architecture is an open research
problem.
Program changes. eBPF programs are usually loaded at runtime.
Even when targeting an FPGA platform, which supports hardware
reconfiguration, the synthesis of an eHDL-generated pipeline usu-
ally takes few hours, due to the hardware synthesis process. Thus,
development cycles for network functions, as well as servicing pro-
cedures need to change. Even if a synthesized pipeline is already
available for an FPGA target, loading it requires putting the FPGA
NIC out of service, to re-flash it. Considering the low resource re-
quirements of eHDL pipelines, we plan to explore the use of dynamic

partial reconfiguration to enable dynamic loading of programs in
future.

7 CONCLUSION
eHDL generates specialized hardware architectures to run (unmodi-
fied) eBPF programs provided as input. The generated hardware can
run such programs at line rate on current 100Gbps FPGA NICs (and
up to 250Mpps), with an end-to-end forwarding latency of about
1`𝑠 . Unlike general high-level synthesis tools, eHDL does not require
any hardware expertise. Compared to network-specific high-level
synthesis tools, it is instead capable of handling more expressive
stateful programs. Given that eHDL designs can already forward
higher packet rates than the maximum supported on a 100Gbps
port (250Mpps vs 150Mpps), and considering the small hardware
resource requirements and the pipelined processing model, we spec-
ulate that a similar design is also suitable to address the needs of
NICs with higher port speeds (e.g., >200Gbps). We believe eHDL is
a first step towards enabling network application developers to de-
fine their own NIC’s hardware functions, thereby scaling per-node
performance for the upcoming faster network port speeds.

ACKNOWLEDGMENTS
This work has been partially funded by the European Commission
in the frame of the Horizon 2020 project 5GMED (grant #951947)
and MARSAL (grant #101017171), and project SERICS (PE00000014)
under the NRRP MUR program funded by the EU - NGEU, and
the ECSEL Joint Undertaking, under grant agreement n. 876967
(“BRAINE”).

A APPENDIX
A.1 Modeling of Throughput Degradation Due

to Flushing
We can analytically compute the throughput achievable when flush-
ing occurs considering two parameters: (i) the number of stages
𝐾 that are flushed, which in the current implementation are the
stages from the beginning of the pipeline up to the stage where
a data hazard occurred, and (ii) the number of stages 𝐿 between
the write and the read stages. It must be noted that in the current
implementation𝐾 has an additional overhead of 4 clock cycles used
to reload the pipeline after a flush.

If we have 𝑁 flows, and we suppose that the flows are uniformly
distributed it is possible to compute the flushing probability as the
probability that two packets of the same flow are inside one of the
𝐿 stages. This is the standard birthday paradox, so the flushing
probability can be roughly approximated as:

𝑃𝑢
𝑓
= 1 − 𝑒−

𝐿2
2𝑁 (1)

A more realistic setting uses a Zipfian distribution of the packets,
in which 𝑖 − 𝑡ℎ flow has a frequency 𝑓𝑖 ∝ 1/𝑖 . Since

𝑁∑︁
𝑖=1

1/𝑖 ≈ 𝑙𝑛(𝑁)

219

eHDL: Turning eBPF/XDP Programs into Hardware Designs for the NIC ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

we can define the probability of getting the 𝑖 − 𝑡ℎ flow as 𝑃𝑍
𝑖

=
1

𝑖 ·𝑙𝑛 (𝑁) , where the 𝑙𝑛(𝑁) factor is used to normalize to 1 the sum
of all the 𝑃𝑍

𝑖
.

The flushing probability 𝑃𝑍
𝑓
(𝑖) caused by the 𝑖 − 𝑡ℎ flow can be

approximated as the probability to have at least two occurrences of
the 𝑖 − 𝑡ℎ flow in 𝐿 trials. This can be computed as

𝑃𝑍
𝑓
(𝑖) ≈ 𝐿(𝐿 − 1)

2
(𝑃𝑍𝑖)2 (1 − 𝑃𝑍𝑖)𝐿−2

Thus the overall 𝑃𝑍
𝑓
is

𝑃𝑍
𝑓
=

𝑁∑︁
𝑖=𝑖

𝑃𝑍
𝑓
(𝑖)

Considering a theoretical throughput of one packet for clock
cycles we can achieve up to𝑇 = 250𝑀𝑝𝑝𝑠 when no flushing occurs.
When the flushing occurs the throughput decreases to 𝑇𝑓 = 𝑇 /𝐾 .
Thus the overall throughput of the pipeline 𝑇𝑝 is

𝑇𝑝 =
𝑇

(1 − 𝑃𝑓) + 𝐾𝑃𝑓
(2)

we can retrieve the maximum number of stages 𝐾𝑚𝑎𝑥 that can
be flushed maintaining a minimum pipeline throughput as:

𝐾𝑚𝑎𝑥 =
𝑇 /𝑇𝑝 − (1 − 𝑃𝑓)

𝑃𝑓
(3)

In all the practical settings the number of flows is at least 50K
and 𝐿 is limited. We reported in table 3 the number 𝐾 of stages to
be flushed and the number of stages 𝐿 between the read and the
write stage for the use cases discussed in §5 for the performance
assessment. It is possible to see that 𝐿 is usually in the range 1-3. It is
worth to notice that for many of the use case in the table, the atomic
primitive could be also used to avoid flushing. The only exception
in the value of 𝐿 is the DNAT use case in which the delay between
the read and write stage is significant. This is due to the nature of
the network function that need to execute a complex sequence of
instructions when a miss occurs in the first read operation. This
corresponds to the binding of a new flow in the connection table.

Table 3: Pipeline throughput 𝑇𝑝 for different use cases sup-
posing 50K flows with a Zipfian distribution.

Program K L 𝑇𝑝

Simple firewall N/A N/A N/A
Tunnel 109 2 120 Mpps
Router 41 2 178 Mpps
DNAT 33 51 N/A
Suricata 59 3 91 Mpps
Leaky_bucket 39 5 52 Mpps

It must be noticed that the impact of the flushing on this case only
happens when a new flow arrives, while in the standard condition
no write operations are done into the eBPF maps, and thus no
flushing will occur in the pipeline. Excluding this case, we can
compute the 𝐾𝑚𝑎𝑥 that can sustain 148 Mpps (corresponding to the

saturation of the 100 Gbps link) with different values of 𝐿, under
the assumption of Zipfian distribution, as reported in table 4. We
can also report the maximum𝑇𝑝 achievable by the specific program
in the last column of table 3.

Table 4: Maximum number of stages that can sustain maxi-
mum throughput for different values of L, under the assump-
tion of Zipfian distribution

L 𝑃𝑍
𝑓

𝐾𝑚𝑎𝑥

2 1% 61
3 3% 21
4 6% 11
5 10% 7

As can be seen, there are several use cases that theoretically
cannot sustain the Zipfian traffic condition with minimal-size pack-
ets. Furthermore, it is possible to reduce the number 𝐾 of stages
to be flushed by inserting an elastic buffer in the pipeline. This
buffer should store the pipeline registers when the flushing signal
is raised, without propagating the flushing up to the beginning of
the pipeline. This reduces the throughput penalty to the number of
stages between the elastic buffer and the write stage. However, the
experiments that we presented in section §5 shows that the actual
degradation of the throughput is much less significant than the one
foreseen from this model. Thus we did not use the elastic buffer to
reduce the number of stages in the current implementation of the
eHDL toolchain.

We also remark that for several of the above-reported use cases,
we in fact apply the atomic operations block, which prevents the
need to flush the pipeline.

A.2 Flushing with Side Effects
eHDL flushes a pipeline in case of a RAW hazard. If a program
accesses multiple maps during its execution, there is a risk that
a pipeline that already modified values in earlier maps is flushed
while accessing a later map, thereby leading to a wrong system
state. This problem is addressed by constraining the portion of the
flushed pipeline. That is, when a pipeline includes multiple map
accesses, elastic buffers (similar to the packets input queue) are
added in between pipeline stages. Flushing happens only starting
from the last buffer, instead of propagating until the start of the
pipeline. This way, writing to earlier maps is not repeated if there
is a need to flush later stages of the pipeline.

A.3 Instruction Level Parallelism
In Section 3.3, we mention that a key feature of eHDL is the ability
to leverage ILP to generate faster pipelines, without the need to
compromise on hardware resources. In fact, eHDL’s area usage is
directly proportional to the number of pipeline stages it has to
implement. Thus, a reduction in the number of stages is crucial
to the minimization of used hardware resources: each instruction
processed in parallel with other ones shortens the pipeline by one
stage. Table 5 reports ILP values associated with the use cases
discussed in the paper.

220

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola, and Salvatore Pontarelli

1 void lookup_and_incr(

2 stream <ap_uint <16>> &key) {

3 #pragma HLS PIPELINE II=1

4 #pragma HLS INLINE off

5 static ap_uint <64> curr_value;

6 static ap_uint <64> updating_value;

7 static enum aState

8 {map_IDLE , map_UPDATE} mapState;

9 static hashTableEntry hashTable [256];

10 hashTableEntry currEntry;

11 hashTableEntry updatingEntry;

12 #pragma HLS BIND_STORAGE variable=

hashTable type=RAM_1P impl=BRAM

13 #pragma HLS DEPENDENCE variable=hashTable

14 inter false

16 switch(mapState) {

17 case map_IDLE:

18 if (!key.empty()) {

19 key.read(currEntry.key);

20 currEntry.value =

21 hashTable[currEntry.key].value;

22 mapState = map_UPDATE ;}

23 break;

24 case map_UPDATE:

25 updatingEntry.value=currEntry.value + 1;

26 updatingEntry.key =currEntry.key;

27 hashTable[updatingEntry.key] =

28 updatingEntry;

29 mapState = map_IDLE;

30 break;

31 }

32 }

Listing 3: Lookup function for the program in Vitis-HLS

1 void toy_HLS(

2 stream <axiWord >& ethStreamIn ,

3 stream <axiWord >& ethStreamOut ,

4 stream <axiWord >& pcieStreamOut){

5 #pragma HLS INTERFACE ap_ctrl_none

6 port=return

7 #pragma HLS DATAFLOW

8 #pragma HLS interface

9 mode=axis port=ethStreamIn

10 #pragma HLS interface

11 mode=axis port=ethStreamOut

12 #pragma HLS interface

13 mode=axis port=pcieStreamOut

14 static stream <ap_uint <16> > key;

15 #pragma HLS STREAM variable=key depth =256

16 #pragma HLS aggregate variable=key

17 parse_key(ethStreamIn , ethStreamOut ,

18 pcieStreamOut , key);

19 lookup_and_incr(key);

20 }

Listing 4: Main body for the program in Vitis-HLS

1 void parse_key(

2 stream <axiWord >& ethStreamIn ,

3 stream <axiWord >& ethStreamOut ,

4 stream <axiWord >& pcieStreamOut ,

5 stream <ap_uint <16>>& keyStream){

6 #pragma HLS PIPELINE II=1

7 #pragma HLS INLINE off

8 static uint16_t wordCount , key;

9 axiWord currWord;

10 packet pkt;

11 if (! ethStreamIn.empty()) {

12 ethStreamIn.read(currWord);

13 ethStreamOut.write(currWord);

14 switch(wordCount) {

15 case 0:

16 pkt.dstMac = currWord.data(47, 0);

17 pkt.srcMac (15,0)=currWord.data (63 ,48);

18 break;

19 case 1:

20 pkt.srcMac (47 ,16)=currWord.data (31,0);

21 pkt.ethType = currWord.data(47, 32);

22 pkt.hwType = currWord.data(63, 48);

23 break;

24 default: break ;}

26 if (currWord.last == 1) {

27 key = 0;

28 if (pkt.ethType == ETH_P_IP)

29 key = 1;

30 else if (pkt.ethType == ETH_P_IPV6)

31 key = 2;

32 else if (pkt.ethType == ETH_P_ARP)

33 key = 3;

34 keyStream.write(key);

35 wordCount = 0;

36 }else

37 wordCount ++; }

38 }

Listing 5: Parse function for the program in Vitis-HLS

Table 5: Instruction level parallelism values achievable for
the eBPF usecases tested.

max ILP avg ILP
Simple Firewall 3 1.48

Tunnel 15 2.37
Router 5 1.54
DNAT 7 1.67

Suricata 3 1.42

As previously highlighted in Section 3.3, eHDL does not face the
design trade-offs of fixed processors architectures. For instance,

221

eHDL: Turning eBPF/XDP Programs into Hardware Designs for the NIC ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

each stage can grow to an arbitrary amount of instruction paral-
lelism. For example in some cases, like Tunnel, there is at least one
stage with 15 instructions executed in parallel. This is the outcome
of a looser set of control and data dependencies in the program.
When considering all the stages, the average ILP for the imple-
mented eBPF programs is instead between 1.5 and 2.5. This is in
line with the numbers reported by previous work [5].

A.4 C++ Program for Vitis HLS
We report the C++ source code we developed to implement with
Vitis HLS an equivalent version of the program we used as running
example we used throughout the paper. As it can be seen by the
amount of code and exotic data structure and pragmas, state-of-
the-art HLS tools expect the programmers to be in fact a hardware
expert. The program is split in three parts for readibility: Listing 4
contains the program "entry point"; Listing 5 implements packet
parsing; and Listing 3 implements the "map" lookup and value
update function.

REFERENCES
[1] 2019. The CAIDA Anonymized Internet Traces Dataset. https://www.caida.org/

catalog/datasets/passive_dataset/.
[2] Chris Arges. 2023. How We Used eBPF to Build Programmable Packet Filtering

in Magic Firewall. https://blog.cloudflare.com/programmable-packet-filtering-
with-magic-firewall/.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[4] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review 43, 4 (2013), 99–110.

[5] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli,
Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. 2020. hXDP: Efficient Software
Packet Processing on FPGA NICs. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 973–990.

[6] Derek Chiou. 2017. The microsoft catapult project. In 2017 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 124–124.

[7] Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, and Mendel Rosenblum. 2020.
_-nic: Interactive serverless compute on programmable smartnics. In 2020 IEEE
40th International Conference on Distributed Computing Systems (ICDCS). IEEE,
67–77.

[8] Cilium. 2023. Cilium - Linux Native, API-Aware Networking and Security for
Containers. https://cilium.io/.

[9] Philippe Coussy, Daniel D Gajski, Michael Meredith, and Andres Takach. 2009.
An introduction to high-level synthesis. IEEE Design & Test of Computers 26, 4
(2009), 8–17.

[10] DPDK. 2023. Data Plane Development Kit. https://www.dpdk.org//.
[11] Facebook. 2018. Katran source code repository. https://github.com/

facebookincubator/katran.
[12] Jiawei Fei, Chen-Yu Ho, Atal N. Sahu, Marco Canini, and Amedeo Sapio. 2021.

Efficient Sparse Collective Communication and Its Application to Accelerate Dis-
tributed Deep Learning. In Proceedings of the 2021 ACM SIGCOMM2021 Conference
(Virtual Event, USA) (SIGCOMM ’21). Association for Computing Machinery,
New York, NY, USA, 676–691. https://doi.org/10.1145/3452296.3472904

[13] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: Smartnics in the public cloud.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). 51–66.

[14] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. 2010.
MAWILab: Combining Diverse Anomaly Detectors for Automated Anomaly
Labeling and Performance Benchmarking. In ACM CoNEXT ’10. Philadelphia, PA,
12 pages.

[15] Alex Forencich, Alex C Snoeren, George Porter, and George Papen. 2020. Corun-
dum: an open-source 100-Gbps NIC. In 2020 IEEE 28th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE,
38–46.

[16] Fungible. 2021. Fungible F1 Data Processing Unit. https://www.fungible.com/wp-
content/uploads/2021/09/PB0028.02.12020914-Fungible-F1-Data-Processing-
Unit.pdf.

[17] Xiangyu Gao, Taegyun Kim, Aatish Kishan Varma, Anirudh Sivaraman, and
Srinivas Narayana. 2019. Autogenerating fast packet-processing code using
program synthesis. In Proceedings of the 18th ACM Workshop on Hot Topics in
Networks. 150–160.

[18] Hubble github repository. 2023. https://github.com/cilium/hubble.
[19] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John

Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The EXpress
Data Path: Fast Programmable Packet Processing in the Operating System Ker-
nel. In Proceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies (Heraklion, Greece) (CoNEXT ’18). Association
for Computing Machinery, New York, NY, USA, 54–66. https://doi.org/10.1145/
3281411.3281443

[20] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. 2019. The
p4-> netfpga workflow for line-rate packet processing. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 1–9.

[21] Intel. 2023. Intel Infrastructure Processing Unit (Intel IPU) and SmartNICs. https:
//www.intel.com/content/www/us/en/products/network-io/smartnic.html.

[22] Jakub Kicinski and Nicolaas Viljoen. 2016. eBPF Hardware Offload to SmartNICs:
cls_bpf and XDP. Proceedings of netdev 1 (2016).

[23] Sakari Lahti, Panu Sjövall, Jarno Vanne, and Timo D Hämäläinen. 2018. Are we
there yet? A study on the state of high-level synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38, 5 (2018), 898–911.

[24] Leonardo Linguaglossa, Stanislav Lange, Salvatore Pontarelli, Gábor Rétvári,
Dario Rossi, Thomas Zinner, Roberto Bifulco, Michael Jarschel, and Giuseppe
Bianchi. 2019. Survey of Performance Acceleration Techniques for Network
Function Virtualization. Proc. IEEE 107, 4 (2019), 746–764. https://doi.org/10.
1109/JPROC.2019.2896848

[25] Devon Loehr and David Walker. 2022. Safe, Modular Packet Pipeline Program-
ming. In Symposium on Principles of Programming Languages, Vol. 6.

[26] Thomas Luinaud, Jeferson Santiago da Silva, JM Pierre Langlois, and Yvon Savaria.
2021. Design Principles for Packet Deparsers on FPGAs. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 280–286.

[27] Scott A Mahlke, Richard E Hank, James E McCormick, David I August, and Wen-
Mei W Hwu. 1995. A comparison of full and partial predicated execution support
for ILP processors. In Proceedings of the 22nd annual international symposium on
Computer architecture. 138–150.

[28] Marvell. 2021. Marvell OCTEON 10 DPU Platform. https:
//www.marvell.com/content/dam/marvell/en/public-collateral/embedded-
processors/marvell-octeon-10-dpu-platform-product-brief.pdf.

[29] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu.
2017. SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Us-
ing Switching ASICs. In Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication (Los Angeles, CA, USA) (SIGCOMM ’17).
Association for Computing Machinery, New York, NY, USA, 15–28. https:
//doi.org/10.1145/3098822.3098824

[30] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew
Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, et al. 2015.
A survey and evaluation of FPGA high-level synthesis tools. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 35, 10 (2015), 1591–
1604.

[31] Napatech. 2023. Scaling Suricata Performance to 100 Gbps With Napatech Smart-
NICs. https://www.napatech.com/support/resources/solution-descriptions/
scaling-suricata-performance-to-100-gbps-with-napatech-smartnics/.

[32] NEC. 2020. Building an Open vRAN Ecosystem White Paper. https://www.nec.
com/en/global/solutions/5g/index.html.

[33] Nvidia. 2021. Nvidia Bluefield-2 DPU. https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf.

[34] MAkif Özkan, Arsène Pérard-Gayot, RichardMembarth, Philipp Slusallek, Roland
Leißa, Sebastian Hack, Jürgen Teich, and Frank Hannig. 2020. AnyHLS: high-level
synthesis with partial evaluation. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 39, 11 (2020), 3202–3214.

[35] Pensando. 2022. Distributed Services Card. https://www.amd.com/system/files/
documents/pensando-dsc-200-product-brief.pdf.

[36] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-
halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. 2015. The design
and implementation of Open vSwitch. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15). 117–130.

[37] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,
Rastislav Bodik, and Thomas Anderson. 2018. Floem: A Programming System
for {NIC-Accelerated} Network Applications. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). 663–679.

[38] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cascone, Marco
Spaziani, Valerio Bruschi, Davide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, et al. 2019. Flowblaze: Stateful packet processing in hardware. In

222

https://www.caida.org/catalog/datasets/passive_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/
https://blog.cloudflare.com/programmable-packet-filtering-with-magic-firewall/
https://blog.cloudflare.com/programmable-packet-filtering-with-magic-firewall/
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://cilium.io/
https://www.dpdk.org//
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://doi.org/10.1145/3452296.3472904
https://www.fungible.com/wp-content/uploads/2021/09/PB0028.02.12020914-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2021/09/PB0028.02.12020914-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2021/09/PB0028.02.12020914-Fungible-F1-Data-Processing-Unit.pdf
https://github.com/cilium/hubble
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://doi.org/10.1109/JPROC.2019.2896848
https://doi.org/10.1109/JPROC.2019.2896848
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://doi.org/10.1145/3098822.3098824
https://doi.org/10.1145/3098822.3098824
https://www.napatech.com/support/resources/solution-descriptions/scaling-suricata-performance-to-100-gbps-with-napatech-smartnics/
https://www.napatech.com/support/resources/solution-descriptions/scaling-suricata-performance-to-100-gbps-with-napatech-smartnics/
https://www.nec.com/en/global/solutions/5g/index.html
https://www.nec.com/en/global/solutions/5g/index.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.amd.com/system/files/documents/pensando-dsc-200-product-brief.pdf
https://www.amd.com/system/files/documents/pensando-dsc-200-product-brief.pdf

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola, and Salvatore Pontarelli

16th USENIX Symposium on Networked Systems Design and Implementation (NSDI
19). 531–548.

[39] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh,
Gianni Antichi, Paolo Costa, Hamed Haddadi, and Roberto Bifulco. 2022. Re-
architecting Traffic Analysis with Neural Network Interface Cards. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
22). 513–533.

[40] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.
2016. Packet transactions: High-level programming for line-rate switches. In
Proceedings of the 2016 ACM SIGCOMM Conference. 15–28.

[41] Suricata. 2023. Suricata IDS Website. https://suricata.io/.
[42] tomshardware.com. 2022. AMD Acquires Pensando Data Processing Units in

a $1.9 Billion Deal. https://www.tomshardware.com/news/amd-acquires-
pensando-data-processing-units.

[43] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate
Foster, and HakimWeatherspoon. 2017. P4FPGA: A rapid prototyping framework

for p4. In Proceedings of the Symposium on SDN Research. 122–135.
[44] Xilinx. 2017. P4-SDNet User Guide. https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2017_4/ug1252-p4-sdnet.pdf.
[45] Xilinx. 2021. Alveo SN1000 SmartNICs. https://www.xilinx.com/content/dam/

xilinx/publications/product-briefs/xilinx-alveo-sn1000-product-brief.pdf.
[46] Xilinx. 2022. Introduction to Vitis HLS. https://docs.xilinx.com/r/en-US/ug1399-

vitis-hls/Introduction-to-Vitis-HLS.
[47] Noa Zilberman, Yury Audzevich, G Adam Covington, and Andrew W Moore.

2014. NetFPGA SUME: Toward 100 Gbps as research commodity. IEEE micro 34,
5 (2014), 32–41.

[48] Noa Zilberman, Gabi Bracha, and Golan Schzukin. 2019. Stardust: Divide and
Conquer in the Data Center Network. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). USENIX Association, Boston, MA,
141–160. https://www.usenix.org/conference/nsdi19/presentation/zilberman

Received 2022-10-20; accepted 2023-01-19

223

https://suricata.io/
https://www.tomshardware.com/news/amd-acquires-pensando-data-processing-units
https://www.tomshardware.com/news/amd-acquires-pensando-data-processing-units
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1252-p4-sdnet.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1252-p4-sdnet.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-alveo-sn1000-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-alveo-sn1000-product-brief.pdf
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction-to-Vitis-HLS
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction-to-Vitis-HLS
https://www.usenix.org/conference/nsdi19/presentation/zilberman

	Abstract
	1 Introduction
	2 background and concept
	2.1 Related Work
	2.2 Why eBPF/XDP Helps?
	2.3 From eBPF to Hardware Pipelines
	2.4 Challenges

	3 Design
	3.1 Program Analysis and Instruction Labeling
	3.2 Instruction Fusion and Transformation
	3.3 Parallelization
	3.4 Template Hardware Primitives
	3.5 Control Flow Enforcement

	4 Consistency and Optimizations
	4.1 eBPF Maps and Data Consistency
	4.2 Packet Framing
	4.3 State Pruning
	4.4 Pipeline Example
	4.5 Integration in the NIC Shell

	5 Evaluation
	5.1 Throughput and Latency
	5.2 Hardware Resources and Energy
	5.3 Impact of Flushing
	5.4 Impact of State Pruning
	5.5 Programming Experience

	6 Discussion and Limitations
	7 Conclusion
	A Appendix
	A.1 Modeling of Throughput Degradation Due to Flushing
	A.2 Flushing with Side Effects
	A.3 Instruction Level Parallelism
	A.4 C++ Program for Vitis HLS

	References

