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Abstract—The introduction of AI-based smart-sensors on the
network might suppose stringent requirements for the network
edge, including the necessity to process real-time video feeds.
Moreover, the introduction of vehicular communications allows
the multiple location placement of necessary computational
processes. To this end, we have proposed an AI-based smart-
sensor solution that is able to be deployed at the extreme edge
of the network (i.e., on the vehicle). The architecture for the
connected vehicle is presented and accuracy results are provided
for the proposed smart-sensor.

Index Terms—Connected vehicles, V2X, Machine-learning,
Hazard detection.

I. INTRODUCTION

The introduction of vehicle to everything (V2X) communi-
cations has facilitated the spread of connected vehicles. This
connectivity can be understood as a new safety mechanism
that enhances the perception environment at a larger extend
from the immediate surroundings of the vehicle [1]. With
the advance of this technology, novel services that consider
vehicle positions and detected hazards have appeared, such as
Anticipated cooperative collision avoidance (ACCA), which
considers a service architecture with two connected vehicles
from original equipment manufacturers (OEMs) [2]. Some of
the services to provide information require a large amount
of computing capacity, such as computer-based vision for
hazard detection. These computing capacity might be located
at the network edge, as presented by the authors in [3].
The introduction of processing capabilities at network edge,
might not be sufficient due to the necessary stringent network
constraints that might require a continuous feed of stereo
cameras through the V2X network. To this end, this paper
proposes to introduce smart-sensors that are able to run at the
extreme edge of the network and evaluate their accuracy.

This paper presents an architecture for detection of hazard
events for a safer vehicle environment and their notification
to other connected vehicles using V2X communications. The
authors propose the introduction of Graphics processing unit
(GPU) processing at the extreme edge of the network (i.e.,
the vehicle) to process video feed from a stereo-vision depth-
camera in the front of it. For the experiments, the authors have
used the GPS coordinates provided by a commercial device
to have a reference to compare the accuracy of the proposed
approach. It was concluded the proposed approach is suitable
to use in highway scenarios.

This paper is organized as follows: In Section II we present
a State-of-the-Art review. Section III describes the proposed
architecture. Section IV provides the experimental evaluation,
and, finally, Section V concludes this work.

II. STATE-OF-THE-ART

The detection of hazard events for a safer vehicle envi-
ronment has been explored in the literature. Oh et al. [4]
propose a rear-end collision risk index from data collected
using a surveillance system in a freeway in California. This
surveillance system uses multiple inductive loops placed on the
pavement and video camera devices to obtain individual vehi-
cle information such as model, vehicle arrival time, speed,etc.
This system requires installation of inductive loops in the
pavement, which could only be done for limited segments of
the road.

A different approach is provided by Ahmed et al. [5] who
used on-board active tags to track vehicles within toll roads.
Again, collision estimation could only be computed in specific
road segments where tag readers were installed. Sun and
Sun [6] proposed a dynamic Bayesian network (DBN) model
to predict crash events from video surveillance records in
expressways.

Using a simulated in-vehicle system composed of radar,
LiDAR and cameras, Dávid et al. [7] introduce a collision
risk scale. The risk of basic driving actions such as overtaking
is evaluated using simulations. Katrakazas et al. [8] perform
risk evaluation using real-driving data obtained from a car
equipped with GNSS and radar. The vehicle’s speed its geo-
spatial coordinates while the radar estimates the number of
surrounding vehicles. Unfortunately, radar cannot identify and
track the vehicles independently. Our Smart Sensor system
covers the above disadvantages by identifying, classifying and
tracking multiple vehicles simultaneously.

III. CONNECTED VEHICLE ARCHITECTURE

In this work, we propose using a machine-learning approach
for hazard detection in real-time, leveraged by V2X tech-
nology to provide warnings with lane-accuracy. The system
will be equipped on-board a connected vehicle. Warnings
could be used to inform the driver, via an Human-Machine
Interface (HMI), other connected vehicles nearby, and road
operators. These warnings could become the base of other



Fig. 1. Description of V2X leveraged hazard detection sensor.

V2X services, like hazard-notification, coordinated maneuver
recommendation, platooning, and others.

A general description is shown in figure 1. Hazard events
are detected using a depth-camera, which provides both RGB
video and points-clouds of the surroundings. The latter will
be used to estimate the location and speed of events relative
to the vehicle. These data becomes the input of a machine-
learning based algorithm (described below) to perform object
classification, position estimation, and hazard detection in real-
time. The algorithm also takes inputs from an on-board unit
(OBU), which will provide data about the location, speed, and
heading of the vehicle to compute the latitude and longitude of
hazard’s location. Besides, the OBU could be used to broadcast
warning messages, which could be used by others to take
preventive action.

1) On-board Hazard Detection: A detailed description of
the on-board hazard detection system (a.k.a Smart-sensor)
appears in figure 2. Inputs come from the depth-camera and the
OBU. The former provides RGB video which is used for the
neural network to perform classification of common objects
in highway scenarios (e.g. vehicles, pedestrians, livestock).
The classification algorithm is a neural network based on tiny
YOLOv4 [9].

Our approach to tracking is defined from some assumptions
about the nature of hazards: Hazards are considered punctual
events. This occurs because the vehicle is assumed to be
moving constantly forward, and any event will be relevant
for the vehicle during a small time window depending on
the vehicle-event relative speeds. Also, the camera is assumed
being facing in the same direction of the vehicle’s movement.

Points clouds from the depth-camera are used to estimate the
relative position of events relative to the vehicle. These data are
processed by the object tracker block which is a set of Kalman
filters. These filters provide estimation of position and speed of
objects detected by YOLO. Once the distance is estimated, we
can use this information to obtain the perpendicular distance
of the event relative to the vehicle using the points cloud, and
use this data to compute the coordinates of the event.

Tracking is performed by the filters bank block, which
decides when to create or delete Kalman filters. The process
is not as rigorous as the one used in other tracking algorithms

(i.e., Deep Sort [10]) to avoid overhead, decreasing frame-
rate. Low frame-rates could hinder the sensor detecting and
tracking objects at when the connected vehicle is moving at
high speeds.

In our approach, assignation of bounding boxes from YOLO
to Kalman filters is performed using the IoU metric [11]:

IoU = argmaxi∈L

∣∣B ∩Bi
∣∣

|B ∪Bi|
, (1)

where B are coordinates of current bounding-box associated
to a Kalman filter, and Bi are the coordinates of the i-
th candidate bounding-box. Equation 1 provides a reliable
tracking device under the assumption the frame-rate is high
enough, keeping uncertainty from Kalman filters under safe
limits. Attaining higher frame-rates is desired to be able
tracking faster moving objects. Under the conditions described,
Kalman filters could be deleted once the hazard event has
disappeared from view or they are not updated for times up to
1s. This value was empirically chosen based on tests results
collected during the development.

The hazard warning generator block decides whether the
tracked objects should be labeled like hazards and reported to
the user. In our case, we use the class of the detected object,
where classes ”pedestrian” and ”animal” are automatically
considered hazards, in the case of vehicles (e.g., ”car”, ”truck”,
etc) are considered hazards where they are stationary. The
vehicle’s speed is necessary in this step, which is provided
by the OBU’s sensors (i.e., accelerometers and GNSS). The
”pedestrian” and ”animal” classes are considered hazards
automatically because they are not supposed to be present on
the road; it should be noticed the area of interest in the image
is the part focused on the highway.

Finally, detected hazards are reported using their coordi-
nates, which are computed from the current vehicle’s position
and the filtered measurements from the depth-camera. We can
compute the hazard’s latitude and longitude difference from
the vehicle’s current position using the following equations
[12]: [

∆Lo
∆La

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
z

]
(2)

where equations 2 is basically a rotation matrix. z is the
parallel component of the distance between the event and the
camera, while x is the orthogonal component. θ is the vehicle’s
heading. Once we have the components the new coordinates
are computed in the following manner:

La = La0 +
180∆La
πre

, (3)

Lo = Lo0 +
180∆Lo

πre cos
(
π∆La
180

) . (4)

Where La0 and Lo0 are the vehicle’s current coordinates, and
re is Earth’s radius in meters.



Fig. 2. Block Diagram of Smart-sensor.

2) On-Board Unit (OBU): The OBU has two main func-
tions into the connected vehicle’s architecture: Providing data
to the Smart sensor and providing connectivity to send/receive
V2X messages. The first point was explained above. Basically,
the OBU provides data about vehicle’s position, speed, and
heading that is used to process the data from the depth-
camera. On the other hand, the OBUs provide V2X con-
nectivity that enables the vehicle to communicate with other
connected vehicles or with the infrastructure using standard
ETSI messages [13]. This is expected to become the base of
Intelligent Transportation (ITS) Systems services in the near
future.

In our application, the system relies on the Cooperative
Awareness Message (CAM) and Decentralized Environmental
Message (DENM) to run the application. While the informa-
tion in these messages could be used to determine whether
other connected vehicles could be a hazard, the connected
vehicle should rely on the Smart-sensor when dealing with
non-connected agents in the road (e.g. pedestrians, animal,
legacy vehicles, etc). Our system is constantly monitoring
CAM messages to further inform the user about their behavior.
Moreover, DENM messages are used to send/receive warnings
about hazards on the road. Each time a hazard is confirmed by
the Smart sensor, a DENM is generated with the timestamp,
location, and cause code of the event. In the meanwhile, the
OBU is constantly scanning DENM messages sent from other
connected vehicles and trigger warning messages to the user.
The service could be easily extended using other messages
as well, for example, the vehicle could receive MAPEM
messages to further process hazard’s location to indicate the
user on which lane the event took place.

3) Dashboard: For the representation of the data we make
use of the framework Streamlit [14] that allows displaying data
in a website. It is Python-based and open-source. Once the
application is launched, it can be accessed by a browser from
different devices connected to the vehicle’s network. Internet
connection is needed to load the maps from the road.

In Figure 3 we can see a screenshot of the dashboard, the
map is provided by OpenStreeMaps. At the top of the dash-

Fig. 3. Displayed information in the dashboard.

board, we show the total number of connected vehicles and
information about the last received warning and recommended
action. On the map, we represent the vehicle with a blue
arrow, and other vehicles with red arrows. Map is centered on
the vehicle. Also, warning icons are represented temporarily
on the map, with one hazard for animal and another hazard
for slow vehicle in this particular example. By placing the
mouse over icons or vehicles, we can see the identifier of
other vehicle or the warning sender, and their distance to the
vehicle. Additional information can be added in form of tables
below the map.

4) MQTT Network: The system entities share the informa-
tion from each other through a Message Queuing Telemetry
Transport (MQTT) architecture. This is a widespread and
lightweight standard messaging protocol designed around the
concept of publishing/subscribing to topics and a broker for
handling messages with connected IoT devices. The network
is set using a WiFi hot-spot provided by the OBU, and the
messages are encoded using JSON format. Figure 4 shows
the MQTT messages exchanged between the entities described
above.

Below, we provide a description of the MQTT messages
shown in Figure 4. Each message is represented in JSON
format including their data fields and a brief description:

• hazardDetected (from Smart Sensor to OBU):
– ObjectClass Class of object detected by the Smart

Sensor (e.g., vehicle, pedestrian, traffic sign).
– ObjectCoordinates Estimated geographical coordi-

nates of the object detected (latitude and longitude



Fig. 4. MQTT messages’exchange

in degrees).
– ObjectVelocity Detected object’s speed in the direc-

tion of the vehicle (km/h).
– HazardType If the object is considered a hazard, it

indicates its type (stationary vehicle, slow vehicle,
pedestrian).

– DetectionTime Timestamp when the object was de-
tected (milliseconds).

• positionVelocity (from OBU to Smart Sensor):
– EgoVehicleCoordinates Geographical coordinates of

the vehicle (latitude and longitude in degrees).
– EgoVehicleVelocity Speed of the vehicle (km/h).

• showWarning (from OBU to Dashboard):
– HazardType Type of hazard detected on the road

(stationary vehicle, slow vehicle, pedestrian, animal).
– HazardCoordinates Estimated geographical coordi-

nates of hazard (latitude and longitude in degrees).
– DetectionTime Timestamp when hazard was detected

(milliseconds).
• showVehicle (from OBU to Dashboard):

– VehicleCoordinates Geographical coordinates of an-
other connected vehicle (latitude and longitude in
degrees).

– VehicleVelocity Speed of another connected vehicle
(km/h).

– VehicleHeading Heading of another connected vehi-
cle (in degrees).

– VehicleType Type of another vehicle (e.g., car, bus,
truck, etc).

IV. EXPERIMENTAL EVALUATION

The complete system was tested on the road to investigate its
performance. Two vehicles were equipped with a commercial
OBU (Commsginia OB4 [15]), and the smart sensor was
equipped in one of them. It was implemented using an Intel
Realsense D455 depth-camera and a Nvidia’s Jetson Nano to
run the machine learning software. The OBU model was cho-
sen because the manufacture provides a commercial hardware
with a complete protocol stack API that provides full freedom
for development. On the other hand, the depth camera and
GPU model were chosen having low power consumption in
mind. The MQTT server and the dashboard were running on a

Fig. 5. Some samples from the target vehicle experiment (orange landmark
is ground truth).

laptop. The target vehicle was kept stationary while the camera
vehicle moved and took measurements about its location from
different positions and at different speeds (between 30 to 40
Km/h given the testing place is a parking lot). The target
vehicle’s OBU was used to obtain its position, deemed it
as ground truth. In a second version of the experiment, a
pedestrian, whose position was determined using a mobile
phone application, was used as target. In the latter case, the
vehicle was stationary while the pedestrian moved around the
scene. Figures 5 and 6 show examples of these measurements,
although, the data of the different tests are aggregated in
the results shown below. In both cases, the positions where
hazards were detected for the first time are shown in the figure.
Tracking is performed to avoid multiple detection of the same
event only.

Target Pedestrian Mean (m) Standard Deviation (m)
Latitude -0.689 1.486

Longitude -0.588 1.322
Total 1.677 1.382

Target Vehicle Mean (m) Standard Deviation (m)
Latitude -1.786 1.416

Longitude 1.474 0.541
Total 2.512 1.154

TABLE I
MEASUREMENT DEVIATIONS STATISTICS FOR TARGET VEHICLE AND

TARGET PEDESTRIAN EXPERIMENTS (1◦ ≈ 111.374KM).

Results are shown in table I. It shows the mean and standard
deviation of the differences in latitude and longitude from
ground truth for both experiments. The results are expressed in
meters. The rows labeled ”Total” show the mean and standard
deviation for the Euclidean distance between the measurement
and ground-truth points. These results show our approach
is capable of hazard detection with lane-accuracy, assuming
a lane has an approximate width of 3.5m in Spain [16].
The sensor operated at speed ≈ 19fps, at which level the
assumptions made above seems to hold true.

We can see the results show less variation for the target
pedestrian experiment than for the target truck experiment.
This could be explained because in the truck experiment the
camera vehicle is moving, while in the pedestrian experiment



Fig. 6. Some samples from the pedestrian vehicle experiment (landmarks are
ground truth).

it remained stationary. Basically, the uncertainty in the GPS
measurements from the OBU is higher when the vehicle is
moving, which is to be expected. In the end, uncertainty of the
Smart sensor could not be less than the uncertainty of the GPS
measurements used to compute the coordinates. Reporting the
relative distances between the hazard and the vehicle in meters
would lead to more precise results (no precision would be lost
in conversions to latitude and longitude), but we feel these raw
data would not be useful in highway applications, specially
when we intend sending warnings to other connected vehicles.

Another point about the differences in accuracy comes from
the nature of the Smart sensor itself. The Smart sensor per-
forms classification of objects in the frame adding a bounding
box around them, and the center of these boxes are used to
obtain the corresponding depth point in the cloud to perform its
computation. Therefore, depending on the particular position
of the bounding box and the position of the vehicle there
could be a variation on the measurement. For example, the
measurement is expected to be different if the camera is
viewing the rear part of the vehicle or the side part of it. On
the other hand, a pedestrian is much smaller than a vehicle,
and these effects are minimized. Therefore, higher precision
at detecting pedestrians could be expected.

V. CONCLUSIONS

This paper introduced a novel architecture for hazard warn-
ing on connected vehicles using V2X communications. The
authors proposed a GPU-based approach at the extreme edge
of the network to process video feed of stereo-vision depth
camera in the front of the vehicle. The results proved the
feasibility and accurateness of the proposed solution. For the
future work, the architecture could be extended to include a
road side unit (RSU) to test communications performance.
Frame-rate would be a critical factor, given low frame-rate
will be an overhead to the communication to the infrastructure.
Also, the hazard evaluation module could be enhanced with
a more sophisticated methods like, for example, machine-
learning algorithms.
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