
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Faster Software Packet Processing on FPGA NICs
with eBPF Program Warping

Marco Bonola, CNIT/Axbryd; Giacomo Belocchi, Angelo Tulumello, and Marco
Spaziani Brunella, Axbryd/University of Rome Tor Vergata; Giuseppe Siracusano,

NEC Laboratories Europe; Giuseppe Bianchi, University of Rome Tor Vergata;
Roberto Bifulco, NEC Laboratories Europe

https://www.usenix.org/conference/atc22/presentation/bonola

Faster Software Packet Processing on FPGA NICs with eBPF Program Warping

Marco Bonola1,2, Giacomo Belocchi1,3, Angelo Tulumello1,3, Marco Spaziani Brunella1,3, Giuseppe
Siracusano4, Giuseppe Bianchi3 and Roberto Bifulco4

1Axbryd, 2CNIT, 3University of Rome Tor Vergata, 4NEC Laboratories Europe

Abstract

FPGA NICs can improve packet processing performance,
however, programming them is difficult, and existing solu-
tions to enable software packet processing on FPGA either
provide limited packet processing speed, or require changes
to programs and to their development/deployment life cycle.

We address the issue with program warping, a new tech-
nique that improves throughput replacing several instructions
of a packet processing program with an equivalent runtime
programmable hardware implementation. Program warping
performs static analysis of a packet processing program, de-
scribed with Linux’s eBPF, to identify subsets of the program
that can be implemented by an optimized FPGA pipeline, the
warp engine. Packets handled by the warp engine are eventu-
ally delivered to a regular eBPF program executor, along with
their program context (registers, stack), to complete execution
of those program parts that cannot be efficiently pipelined.

We prototype program warping on a 100Gbps FPGA NIC,
extending hXDP, a state-of-the-art eBPF processor for FPGA,
and measure its performance running 6 unmodified real-world
eBPF programs, including deployed applications such as
Katran and Suricata. Our prototype runs at 250MHz, uses
less than 15% of the FPGA resources, and improves hXDP
throughput by 1.2-3x in most cases, and up to 18x.

1 Introduction
Datacenter and telecom operators deploy FPGA NICs to han-
dle network port speeds of 100Gbps or more, and to support
heterogeneous applications and workloads [12, 21, 30]. In
fact, these devices can host multiple accelerators [23], e.g.,
for radio signal processing, therefore providing a common
hardware platform to address different scenarios [11].

Nonetheless, for network packet processing functions, such
as firewalls or load balancers, FPGA NICs raise several chal-
lenges. First, programming FPGAs is difficult, often requiring
dedicated teams of hardware specialists [15]. Second, it in-
volves longer synthesis-implementation cycles that may take

hours to complete, before a new program version can be fi-
nally deployed. This is at odds with current practices that
foster continuous deployment cycles, and frequent updates to
the packet processing programs [1,7]. Finally, packet process-
ing functions should consume only minimal FPGA hardware
resources, to leave space to other accelerators required for
signal processing, machine learning, etc.

These requirements, when combined, rule out existing solu-
tions that cannot dynamically change the implemented packet
processing programs, such as those based on the high-level
synthesis of programs described with domain-specific lan-
guages [3, 38, 40] like P4 [8]. Alternative approaches, such as
hXDP [10], explicitly address these challenges, but at the cost
of a lower packet forwarding throughput. In fact, hXDP imple-
ments on the FPGA a processor-based executor for network
programs described with eBPF, which provides a remarkable
but still limited throughput performance, comparable to that
of a single multi-GHz CPU’s core [10].

Our goal is to improve on this figure, and significantly in-
crease throughput while respecting the listed requirements.
We follow the conceptual approach of hXDP, embracing the
Linux’s eBPF framework and its programming model to de-
scribe packet processing functions. However, we introduce a
new technique, program warping, which leverages common
properties of eBPF programs to automatically replace the ex-
ecution of many program’s instructions with a semantically
equivalent hardware-supported implementation, thereby re-
ducing the program execution time and increasing throughput.
As we will see, in some real-world use cases our system can
achieve up to an 18x higher throughput than hXDP.

Program warping builds on the observation that a subset of
the eBPF programs’ instructions implement common packet
processing tasks, such as packet header parsing, which can be
efficiently implemented in pipeline-parallel architectures [9,
13]. Therefore, under the constraint of keeping transparency to
the programmer, we address two main issues in our design: (i)
identifying, from the eBPF program’s bytecode, the tasks that
can be efficiently parallelized in a pipeline; (ii) designing an
FPGA pipeline that runs such tasks, while providing runtime

USENIX Association 2022 USENIX Annual Technical Conference 987

Figure 1: Program warping includes two components: an
optimizing compiler and a hardware engine for FPGAs

reconfigurability and using minimal hardware resources.
We prototype program warping extending hXDP with a

new compiler, the Warp Optimizer, and a new hardware mod-
ule, the Warp Engine (cf. Figure 1). The Warp Optimizer
performs static analyses of the eBPF bytecode, leveraging the
eBPF’s machine model to make several simplifying assump-
tions, e.g., about memory areas’ content, in order to infer the
program’s intent. In this step, the Warp Optimizer identifies
set of instructions whose execution can be performed by the
Warp Engine. The Warp Engine is integrated with the hXDP’s
eBPF executor. Packets received by the system are processed
by the Warp Engine first, and then passed to the eBPF execu-
tor to run the subset of the program that cannot be accelerated.
In turn, this allows us to streamline the Warp Engine imple-
mentation, which resembles a fused parser plus match-action
pipeline, supporting only the minimal set of functionality re-
quired to accelerate common packet processing tasks, and
leaving to the eBPF executor any more complex functionality.

We evaluate our system with a 100Gbps Xilinx Alveo U50,
running 6 real-world use cases: the IP router and the tunneling
examples from the Linux XDP’s application examples; a
Dynamic NAT; the Facebook load balancer Katran [14]; and
the Network Security Appliance Suricata [39]. On this set
of applications and compared to hXDP, program warping
provides a per-application speed-up of at least 1.2-3x, and
up to 18x, while running at 250MHz and keeping the overall
FPGA resources occupation below 15%. To put this result
in perspective, running Suricata in software (Linux v.5.4.0)
on a single Intel Xeon 4410 CPU core achieves a throughput
of about 8.7 Million packets per second (Mpps), whereas
our program warping prototype achieves up to 83Mpps in a
similar setting. This shows that program warping is beneficial
in all cases, but clearer advantages appear with programs that
have a heavier packet parsing and classification component.
In summary, we contribute:

• A method to extract high-level packet processing tasks
from eBPF bytecode, and generate functionally equiv-
alent descriptions that combine parsing descriptions,
match-action rules and subsets of the original bytecode;

• A hardware extension to hXDP, which implements high-
performance and runtime-configurable packet data read-
ing and classification using few FPGA resources;

• The evaluation of the end-to-end system using 6 real-
world use cases and extensive micro-benchmarks.

2 Goal, Requirements and Challenges
Our goal is to provide a significant increase (i.e., >2x) to the
throughput of eBPF packet processing programs on FPGA
NICs, while meeting the following requirements:

1. The system should run unmodified eBPF programs
2. The system should support dynamic program loading
3. The system should use a small fraction of the FPGA

resources (<20%)
This is challenging for several reasons. First, previous work
like hXDP already explored the optimization space for eBPF
programs on FPGA, leveraging instruction-set specialization
and instruction-level parallelism to reduce the number of pro-
grams’ instructions and run them in parallel, when possible.
This suggests that additional instruction-level optimization is
unlikely to provide large gains. Second, our solution space
is limited since we cannot change the eBPF programming
model. For instance, we cannot pursue any solution that would
require programmers to annotate their code, e.g., to discover
parallelization opportunities. Third, the need to support dy-
namic program loading rules out approaches that implement
programs as hardware pipelines, e.g., like in Emu [38] and
P4->NetFPGA [3]. Finally, the requirement to use little FPGA
resources makes effectively impossible to use any solution
that requires complex logic implementation in hardware. For
reference, even streamlined hardware designs like hXDP al-
ready consume about 10% of the FPGA resources.

Non-goal Since we use only a fraction of the FPGA for net-
work packet processing, we do not have the goal of matching
the throughput of designs entirely dedicated to the task.

3 Concept and Background
In this Section we provide background about eBPF/XDP, and
then present the program warping concept and system design.

3.1 Background: eBPF and XDP
eBPF is a Linux technology used to implement load balanc-
ing [14], security [7], monitoring [2], deep packet inspec-
tion [5], policy enforcement [1], and more.

The eBPF framework runs small programs within the Linux
kernel using a virtual machine (VM) with its own Instruction
Set Architecture (ISA). The VM implements a register ar-
chitecture, with a program counter (PC), 10 general registers
(R0−R9), and a read-only stack pointer (R10) that contains
the address of a 512B memory area used as program’s stack.
These capture the current program’s state, which resets for
every new run. eBPF provides maps data structures to save
state across program runs. These are memory areas defined at
compile time and organized as lookup tables.

988 2022 USENIX Annual Technical Conference USENIX Association

eBPF programs written in a high-level language, such as
C, are compiled to the eBPF bytecode. The eBPF bytecode
can be loaded in the kernel using different hooks. We focus
on the XDP hook [19], and call XDP programs an eBPF pro-
gram attached to the XDP hook. The hook is provided at the
NIC driver level. When a packet is received, the XDP envi-
ronment: (i) creates an xdp_md struct to contain the packet
buffer pointers and metadata, such as the packet’s input port
id; (ii) sets R0 to point to the address of the memory area
hosting the struct; (iii) and then starts the VM to run the XDP
program. At the end of its execution, the program can return a
forwarding decision for the packet by writing the forwarding
action code in R0.

When loaded in the Linux kernel, the bytecode is statically
verified to ensure safety, e.g., guaranteed program termination.
To enable verification, eBPF programs can only use a subset
of the C expressive power. For instance, unbounded cycles and
dynamic memory allocations are not allowed. To finally run
on the target hardware, a second (just-in-time) compilation
step translates the eBPF bytecode to the target machine code.
Program example Listing 1 shows an XDP program written
in C. The program checks if the source MAC address of IPv4
packets is in a hashtable. If so, it passes the packet to the
Linux’s network stack. Otherwise, the packet gets dropped.
Furthermore, the program drops any IPv6 packet, and passes
to the network stack any packet that is neither IPv4 or IPv6.

3.2 Program Warping
eBPF executors on FPGA have limited throughput when they
need to process many eBPF instructions: FPGA designs usu-
ally have a low clock frequency (e.g., <400 MHz), making
running an instruction expensive. While parallel instructions
execution is possible, the level of parallelization is at most
2-3 instructions per clock cycle [10]. Reducing the number
of instructions can increase throughput, but can we achieve
functional equivalence with less instructions?

To answer the question, we studied several XDP programs.
We show two examples in Figure 2, where we report the
control flow for the program from Listing 1 (a), and for (a
subset of) Katran [14] (b), an XDP L4 load balancer deployed
in production by Facebook. In all the studied cases, the first
part of the program has instructions that only perform reading
from the packet data and comparisons with constants. This is
the case since network packet processing programs usually
perform packet header parsing and classification as a first step.
After that, the programs diverge significantly, with operations
that are specific to the application logic.

For a hardware implementation, read only access to a single
(small) memory means no data hazards to handle (i.e., no
read/write conflicts), and that hardware wires routing may
be simple, since a single memory contains all the needed
data. In fact, the operations of the first program’s part may be
described by a few match-action rules, as shown in Table 1

Listing 1: A simple eBPF/XDP program example in C

1 int l2_acl(struct xdp_md *ctx) {
2 void *data_end =(void *)(long)ctx->data_end;
3 void *data = (void *)(long)ctx->data;
4 void *lookup_res = NULL;
5 __u32 proto , nh_off;
6 struct ethhdr *eth = data;
7 __u8 key[6] = {0};
8 nh_off = sizeof(struct ethhdr);
9 if (data + nh_off > data_end) {

10 return XDP_DROP;
11 }
12 proto = eth->h_proto;
13 if (proto == BE_ETH_P_IP) {
14 __builtin_memcpy(key, eth->h_source , 6);
15 entry = bpf_map_lookup_elem(&map, &key);
16 if (entry) {
17 return XDP_PASS;
18 } else {
19 return XDP_DROP;
20 }
21 } else if (proto == BE_ETH_P_IPV6) {
22 return XDP_DROP;
23 } else {
24 return XDP_PASS;
25 }
26 }

Figure 2: Flow diagrams for the program from Listing 1
(a) and for (part of) Katran (b). The solid lines show the
part of the program that only needs reading packet data
and comparison operations.

for Listing 1. Rules #1 and #3 only read some bits from the
packet and check their value. Rule #2 is more complex, since
it requires the execution of the program’s part that includes
the lookup and its downstream operations. More generally,
this second part of the program requires to read/write memory
areas beyond that containing the packet data.

From this observation emerges the core idea of program
warping: run the first program’s part on an extremely simple
executor, and then use a downstream eBPF processor to run
only the remaining, more complex instructions. This enables
skipping several instructions, and increase throughput.

3.3 System Design
Without loss of generality, we design program warping as an
extension to hXDP (Figure 1), the current state-of-the-art to

USENIX Association 2022 USENIX Annual Technical Conference 989

eth_proto action
1 IPv6 DROP
2 IPv4 Continue Processing
3 * PASS

Table 1: Match-action rules to implement part of the pro-
gram from Listing 1. Rule #2 needs additional processing
and accessing data beyond the packet’s content.

run XDP programs on FPGA NICs [10]. hXDP provides the
XDP environment for the FPGA NIC, and a compiler that
takes eBPF bytecode and outputs the machine code for the
on-NIC XDP environment. We inherit the eBPF programming
and deployment models from hXDP: from the perspective
of an eBPF/XDP programmer, program warping does not
introduce any change.

Compile time When loading an XDP program’s bytecode
to the NIC, program warping extends the hXDP compiler by
triggering a new compiler first: the Warp Optimizer. The Warp
Optimizer performs static analysis on the bytecode to identify
the instructions that can warped, i.e., they can be run by the
Warp Engine. The output of this process is a configuration for
the Warp Engine in the form of match-action rules.

Runtime At runtime, the Warp Engine receives packets first,
and applies the match-action rules. If a forwarding decision
can be already taken at this stage, the Warp Engine sets the
value of the XDP Environment’s R0, and transfers the packet
to the XDP Environment that carries out the forwarding action.
If instead the program cannot run entirely in the Warp Engine,
then a context restoration is triggered. Context restoration
allows the eBPF executor to skip the warped instructions,
while ensuring a correct internal state to start processing the
remaining instructions. This involves copying data from the
packet to the XDP Environment’s R0−R9 and stack memory,
and setting the program counter to point to the next program’s
instruction. The Warp Engine performs such operations in
parallel while also transfering the packet to the XDP environ-
ment, where finally the processing continues to terminate the
program’s execution. That is, the Warp Engine and the XDP
Environment work in pipeline: while the XDP Environment
processes a packet, the Warp Engine is processing the next
packets. This ensures that the introduction of the Warp Engine
never reduces the system throughput, and that in the worst
case it only introduces an often negligible increase (10s of
nanoseconds) of the packet processing latency.

4 Warp Optimizer
The Warp Optimizer is a custom compiler that takes as in-
put the eBPF bytecode and produces as output: (i) the set of
bits that should be extracted from the packet data; (ii) a set of
match-action rules that will replace the warped (i.e., removed)
program’s instruction; (iii) the description of the context asso-
ciated to context restore actions. The rules’ match conditions
are described by a set of couples (offset, length), which

specify the bits of the packet that should be read. The actions
can be of one of the following two types:

• An XDP forwarding decision that neither modifies the
packet nor the internal state of the system (e.g., the con-
tent of the maps), i.e., DROP, PASS, TX or REDIRECT;

• A context restore to continue execution in the XDP
Environment, configured using the provided program
counter and context (i.e., registers and stack content).

Here, there are two important design decisions that allow us
to minimize hardware complexity. First, the definition of the
match conditions may be thought as roughly corresponding
to the definition of packet header’s fields, however the Warp
Optimizer (and the Warp Engine) have no knowledge of what
a header field is. We purposely avoided the implementation
of a complete packet header parser logic [18], opting instead
for a simpler set of reads of a sequence of bit vectors from
the packet data. This allows us to avoid the implementation
of state machines and enables a fully pipelined execution of
the bit vector extraction. Second, the Warp Optimizer only
provides a forwarding decision action when there is no mod-
ification to the packet and no side effects due to the packet
processing, e.g., map accesses. Modification to the packet
would require additional hardware machinery, e.g., to com-
pute values and write them in the specific packet’s positions.
Instead, accessing any internal state of the system would in-
crease hardware complexity significantly, requiring a tighter
integration with the XDP environment, and introducing po-
tential data hazards due to e.g., read-after-write for packets
processed back-to-back in the Warp Engine pipeline [37].

4.1 Program analysis
To extract the Warp Engine configuration, the Warp Optimizer
performs static analysis of the input program. Here, recall that
XDP programs can implement arbitrary computations, which
generally complicates any static analysis task [29]. Nonethe-
less, eBPF is designed to simplify static verification of pro-
grams loaded in the Kernel, which helps also our analysis. In
particular, we benefit from the definition of three logically
distinct memory areas: (i) the packet buffer; (ii) the stack; (iii)
and maps. Each of these areas can be easily identified. The
packet buffer is retrieved from the struct xdp_md, whose
address is in eBPF VM’s register R1 when a program starts.
The stack base address is stored in the read-only register
R10. Finally, maps are always accessed using a specific eBPF
helper function. With this information the Warp Optimizer
can trace accesses to the different memory areas, and infer
the evolution of the program state.

In greater detail, the Warp Optimizer first builds the pro-
gram’s Control Flow Graph (CFG), e.g., see left part of Fig-
ure 3. The CFG is a directed graph, in which each node rep-
resents a code block, i.e., a set of instructions that are all
executed if the program’s control flow triggers the execution
of the block’s first instruction. The directed edges show how

990 2022 USENIX Annual Technical Conference USENIX Association

Figure 3: The operations of the Warp Optimizer for the program from Listing 1: (i) Control Flow Graph analysis; (ii)
Match-action rules extraction; (iii) Context identification. All the operations are performed at compile time.

the different blocks might be executed one after the other,
depending on the results of (conditional) jumps. Second, the
Warp Optimizer converts the eBPF instructions, which use
physical registers, into a Static Single Assignment (SSA) form.
In this form, physical registers are substituted with variables
that identify the instruction that have defined them. This helps
the tracking of the values accessed by each instruction, and
therefore it allows the Warp Optimizer to identify the accessed
packet data, and the values stored into stack and registers.

After these two processing steps, the Warp Optimizer di-
vides the CFG’s blocks in three categories: start node; middle
nodes; and terminal nodes. Terminal nodes are the blocks
containing as last instruction exit, call or instructions that
write to the packet data. Middle nodes are all the nodes that
are not the start or terminal nodes, and they are further catego-
rized in matching and non-matching nodes. This depends on
whether the block ends with a conditional jump instruction
(matching) or with any other instruction (non-matching).

4.2 Match-action rules generation
Match-action rules generated by the Warp Optimizer are
triples 〈matches, action, priority〉, where matches is a list
of (offset, length) pairs, action is either a forwarding de-
cision or context restore, and priority is an integer value
where the lower number encodes the higher priority. To gen-
erate these triples, the Warp Optimizer runs Algorithm 1. The
algorithm defines a zero initialized current priority counter,
a list of bitvectors extracted from the packet (fields), their
corresponding matching values (matches), and the current
stack and registers. Then, it performs Depth-First Search

(DFS) on the CFG, descending from the start node and stop-
ping when it reaches a terminal node. The paths explored with
this way capture the part of the program that can be warped.

When performing DFS, the algorithm evaluates all the in-
structions in the node, updating the current stack and registers
state (i.e., the registers and stack arrays). For each middle
node, if it is a matching node, the algorithm creates a copy
of the fields and matches, and adds to them the bitvector
checked by the current’s block matching condition. That is,
the condition of the conditional jump, and the variable’s value
used in the condition, respectively. This corresponds to check-
ing if packet_data[s:e] == X, where [s:e] identifies a
vector of e - s bits in the packet starting at offset s, and X is
an e - s long bitvector. The current registers and stack
are also copied, since the algorithm has to explore the two
branches coming after the conditional jump, for which the
program’s state will evolve differently. When doing so, the
algorithm explores first the branch corresponding to the jump
taken case. When completing the exploration of that branch,
the algorithm comes back to the latest encountered branching
point, to explore the other branch, i.e., the one corresponding
to the jump not-taken case (see right-top part of Figure 3).

A branch exploration terminates when there is a termi-
nal node. After evaluating the instructions in the termi-
nal node, the algorithm creates a match-action rule us-
ing the current list of matches and the current priority
value. To define the action associated to the rule, the al-
gorithm looks at the nodes’s last instruction. If it is an
exit instruction the action is a forwarding decision, defined
by the currently evaluated value of the r0 register. Other-

USENIX Association 2022 USENIX Annual Technical Conference 991

Algorithm 1: Warp Optimizer Algorithm
priority← 0
matches, f ields, rules, registers, stack← []
Function get_MAT(block, matches, f ields, priority, rules,

stack, registers):
evaluate_instructions(block, registers, stack)
last_insn← block.instructions[LAST]
if is_terminal(block) then

if is_exit(last_insn) then
rule← 〈matches, Action(r0), priority〉

else
action←
Action(PC=last_insn.pc, registers, stack)

rule← 〈matches, action, priority〉
rules← rules∪{rule}
priority++

else
block+← block.tnext
block−← block. f next
if is_match(last_insn) then

f ields← f ields∪{PacketField(last_insn)}
matches+← matches∪{Match(last_insn)}
get_MAT(block+, matches+, priority, rules,

stack, registers)
get_MAT(block−, matches, priority, rules, stack,

registers)

wise, the action is a restore context action, which includes
〈pc, restored_stack, restored_registers〉, where pc is the
program counter of the instruction immediately following the
node’s last instruction, restored_stack and restored_registers
are the evaluated current stack and registers, i.e., the context
to be restored (right-bottom part of Figure 3). After the rule
creation, the priority counter is incremented. Since the CFG
is explored by selecting first the branch-taken path, this en-
sures that the rules having the longer match list have higher
priority, which is then useful to simplify the rule matching
logic implementation at runtime.

5 Warp Engine
The Warp Engine is a pipelined implementation of a fused
packet parsing and match-action unit, in principle similar to
those implemented in switching ASICs, such as RMT [9], but
with important conceptual differences and simplifications that
are enabled by the co-design with the Warp Optimizer. For
instance, in the Warp Engine there is no distinction between
the input parser and the match-action unit.

Figure 4 shows an overview of the Warp Engine architec-
ture. We can identify three conceptual sub-systems. First,
there is a key extraction unit, which comprises twelve stages
and is in charge of building a 16B long vector extracting bits
from the packet data. Second, a match-action unit uses the key
to perform a lookup for a matching entry, which is associated

with three areas in three distinct memories. These memory
areas store the type of action associated with the packet, and
the program context (register, stack) that should be restored in
case of a context restore action. Finally, the last sub-system is
the context restoration unit, which extracts the packet data re-
quired to build the context for a packet that needs to continue
processing at the end of the Warp Engine. In our design, we
use hXDP to implement the XDP environment on the FPGA,
slightly modifying it to enable the Warp Engine to hook into
the registers and stack memories.

An important aspect of the Warp Engine design is that the
three sub-systems are part of a single pipeline that by design
never stalls. In fact, the only case in which the pipeline stages
do not advance processing is when hXDP is busy processing
a previous packet, and therefore the hXDP’s Active Packet
Selector cannot host a new packet in its buffer memory. This
design has also a second effect, since hXDP is still in charge
of the forwarding of each and any packet, the Warp Engine
has no impact on the packets ordering.

5.1 Key Extractor
The Key Extractor is connected to the packet input queue
through a splitter, which duplicates the first 128B of the
packet to forward them to the Key Extractor’s pipeline. The
pipeline includes 12 stages, and each of them implements a
configurable extractor module. The extractor reads up to 2Bs
from the duplicated packet chunk, performs a simple bitwise
operation on them, e.g., and, with a 2B long constant value,
and finally writes the result of such operation to a lookup key
buffer. Which bytes to read, what operation to perform, and
the value of the constant are all runtime-configurable parame-
ters that are provided by the Warp Optimizer. Each extractor
performs its operations in a single clock cycle, and passes to
the next extractor: (i) its modified lookup key buffer; (ii) the
offset at which to write in such buffer; (iii) the packet chunk.

5.2 Match-action Unit
The match-action includes a ternary-addressable content
memory (TCAM), and three memory areas: (i) the Action
Memory, to store the actions associated to the TCAM entries,
including action type, R0 value and program counter; (ii)
Registers Configuration Memory, which stores the Context
Restoration Unit’s configuration to extract the register values;
(iii) Stack Configuration Memory, which provides a similar
configuration but related to the stack. These three areas are
organized in lines of different sizes, and for each memory the
number of lines is equal to the maximum number of TCAM
entries. The lookup key provided by the key extractor is used
to find the matching entry in the TCAM, which is associated
to a single line number that is then used to access in parallel
the three memory areas. If the line extracted from the action’s
memory includes an action of type forwarding decision, then
the pipeline propagates only such line to the next stage, to

992 2022 USENIX Annual Technical Conference USENIX Association

Figure 4: Warp Engine’s architecture. The pipeline stalls only when hXDP is not ready to receive a next packet.

eventually configure the XDP Environment. Otherwise, each
of the three lines extracted from the three memories is pro-
vided to the downstream pipeline. The memory lines contain
the full configuration for the Context Restoration Unit, in or-
der to build the stack and registers values. Both the TCAM
entries and the memory lines are configured at runtime with
the output of the Warp Optimizer.

5.3 Context Restoration Unit
The Context Restoration Unit comprises two parallel
pipelines, which are composed of modules closely resem-
bling the Extractor modules of the Key Extractor. However,
instead of reading just up to 2B from the packet chunk, the
extractors of the Context Restoration Unit can read up to 8B
each. This is in line with the eBPF VM’s registers size (64bit).
Furthermore, they replace the lookup key buffer with larger
buffers to host either the partially reconstructed stack or the
reconstructed registers’ state. Finally, instead of an offset,
each extractor provides to its downstream extractor the line
read from either the Registers Configuration Memory or the
Stack Configuration Memory, depending on which of the two
parallel pipelines the extractor belongs to. Here, we point out
that this approach was needed since the Context Restoration
Unit has an additional complexity element when compared
to the Key Extractor. The Key Extractor configuration is the
same for any received packet, whereas the configuration for
the Context Restoration Unit strictly depends on the content
of the received packet. Since the entire system is organized
in a pipeline, each stage of the Context Restoration Unit has
to carry along the configuration to restore the context for the
specific packet being processed in that stage.

These two parallel pipelines are fed by a second splitter
that duplicates the packet chunk. The pipeline that restores

the Stack has 10 stages, and it is connected to the Stack Con-
figuration Memory. The line extracted from this memory
provides to the Extractors the information needed to populate
the stack, including constant values and values extracted from
the packet chunk. This information includes: (i) the offset at
which the packet chunk should be read; (ii) the operation to be
performed on the read byte (and the constant value associated
to that); (iii) the target address in the stack. The pipeline that
restores the Registers has 10 stages too, including 9 Extractors
and a Delay element. This is the case since only 9 registers
need restoration (R1 - R9) and the Warp Optimizer ensures
that R0 is only read if its value is changed by the loaded XDP
program after restoration.1 The Delay element is required to
synchronize the two context restoration pipelines.

5.4 Integration with hXDP
The Warp Engine pipeline ends in hXDP. Here, the Warp En-
gine waits for hXDP to be available to receive packets. Once
that is the case, it first copies the packet data in the hXDP’s
Active Packet Selector (APS). The packet data transfer is also
pipelined, and it happens in synch with the Warp Engine’s
pipeline. That is, multiple packets’ data are moved through the
pipeline at each clock cycle, using a 64B datapath (matching
Corundum’s datapath). Then, we have two possible behaviors.
If the current action memory’s line contains a forwarding
action, then the Warp Engine sets R0, and instructs the APS
to proceed with packet forwarding. The APS will then carry
out forwarding according to the value provided in R0. Instead,
if the action is a restore context action, then the Warp En-
gine sets the hXDP’s program counter, registers (R1−R9)

1Register R10 is read-only, and in hXDP it has a constant value. R0 is
used to store the return value of helper function calls, which are usually the
first instruction run by the program after restoration.

USENIX Association 2022 USENIX Annual Technical Conference 993

Application Instructions TCAM Match Max Stack
eBPF hXDP Entries size [B] size [B]

L2 ACL 40 27 3 2 6
Router 119 95 9 4 8
Tunnel 283 155 7 4 24
DNAT 228 135 6 6 40
Suricata 138 65 49 12 40
Katran 1398 1013 20 16 80

Table 2: Tested applications and key metrics

and stack, and starts the hXDP’s Sephirot eBPF Processor.
Sephirot will then run the XDP program starting from the
instruction pointed by the program counter, and using the
provided registers and stack values.

5.5 Implementation
We implemented the Warp Engine design using the latest ver-
sion of hXDP, which is integrated in Corundum [16], clocked
at 250MHz, and targets a Xilinx Alveo U50 FPGA NIC [4].
The Warp Engine is clocked at 250MHz too, and its pipeline
is 28 clock cycles long. Since at 250MHz each clock cycle
takes 4 nanoseconds, the Warp Engine introduces a fixed 112
nanoseconds of latency to each processed packet. This is a
negligible overhead in the vast majority of cases, and it is the
only runtime overhead introduced by the Warp Engine.

Our design has several parameters, e.g., the number of Key
Extractor stages and the packet chunk size, which may be
changed to meet different use case requirements. We summa-
rize them in Appendix, along with the configuration we im-
plemented in this paper, which is driven by the requirements
of the 6 use cases we tested during evaluation (cf. Table 2).

6 Evaluation
In this Section we evaluate correctness, optimizations, re-
sources requirements, and performance of our prototype.

6.1 Applications
We use 6 different applications to perform the evaluation,
as detailed next. Table 2 summarizes them and reports rele-
vant metrics, including their requirements in terms of Warp
Engine’s TCAM entries, lookup key size and max Stack size.
L2 ACL (Running example). This is the application we used
as running example, and described in Section 3.1.
Dynamic NAT. Network Address Translation (NAT) for
flows coming from a LAN and destined to a public net-
work, and reverse translation. The application has two main
branches: (i) one for packets originated from the the LAN,
and (ii) the other for those coming from the public network.
XDP Router. An implementation of an IPv4/IPv6 router, pro-
vided as eBPF application example with the Linux Kernel. It
performs parsing of L2 and L3 headers, and then a lookup in
two tables to take a packet routing decision.

XDP TX Tunnel. This is another eBPF application example
provided by the Linux Kernel. It performs IPinIP encapsu-
lation matching on destination IP address and destination
L4 port. A lookup in a hashtable matches on the destination
virtual IP address to retrieve the tunnelling information.
Suricata IDS. Suricata [39] is a software Intrusion Detection
System (IDS). Among its multiple features, it provides an
XDP program that works as a filter, to perform early dropping
of undesired flows. The XDP program contains a large number
of processing branches to handle all the combinations of
stacked 802.1Q and 802.1AD VLAN headers, and performs
a lookup in a hashmap to take some of the filtering decisions.
Katran. Katran [14] is an XDP-based Layer 4 load balancer.
It encapsulates packets with a specific destination Virtual IP
addresses and balances the connections towards the available
servers. The first part of the processing includes L3 parsing
and handling of ICMP/ICMPv6 protocols. Then, a first map
lookup retrieves the virtual IP information. The application
uses this information to query a Least Recently Used (LRU)
map, in order to fetch the address of a connection table. A
query to the connection table finally retries the real IP address
of the destination server.

6.2 Functional Equivalence
Program warping modifies a program to run it on a system that
comprises two different executors. We therefore performed
tests to verify that the resulting behavior matches the original
program behavior. In particular, for each of the tested applica-
tions, we: (i) enumerate all the program’s control paths; (ii)
generate input packets that trigger the execution of each of the
listed paths; (iii) and finally verify the produced output, for
all the generated input packets. We run these steps for the 6
applications described earlier, verifying that program warping
keeps functional equivalence. More details are in Appendix.

6.3 Warped instructions
We now evaluate the number of instructions that can be
skipped thanks to program warping, since their functionality
is implemented by the Warp Engine. This requires evaluat-
ing the instructions being actually executed at runtime. We
use uBPF [22], a userspace eBPF processor, extending it to
implement a Warp Engine emulator in software, to compute
the number of actually executed instructions for all the tested
applications, and for all the control flow paths of each appli-
cation. Since the control path at later stages of the program
depends also on the stored state, e.g., entries in the maps, our
testing strategy is adapted to test the multiple possible state
conditions. For instance, in the case of the L2 ACL, after the
map lookup there are two different paths: if the lookup returns
an entry; or not (cf. Listing 1).

Figure 5 reports the results, showing the total number of
eBPF instructions executed per path (background bar), and
the number of instructions executed when program warping is

994 2022 USENIX Annual Technical Conference USENIX Association

0 1 2 3
path id

0

10

20

30

40

in

st
ru

ct
io

ns

-1
00

%

-8
5%

-1
00

%

-8
7.
2%

Reduced inst
All inst

(a) L2 ACL

0 1 2 3 4 5 6 7 8
path id

0

20

40

60

80

100

in

st
ru

ct
io

ns

-1
00

%

-5
6.
4%

-1
00

%

-1
00

%

-5
7.
3%

-1
00

%

-1
00

%

-5
4.
4%

-1
00

%

Reduced inst
All inst

(b) Router

0 1 2 3 4 5 6
path id

0

50

100

150

in

st
ru

ct
io

ns

-8
8.
6%

-2
8.
3%

-8
7.
5%

-8
8.
2%

-3
3.
1%

-8
7.
2%

-1
00

%

Reduced inst
All inst

(c) Tunnel

0 1 2 3 4 5 6 7 8 9
path id

0

50

100

150

200

in

st
ru

ct
io

ns

-2
1.
7%

-2
1.
7%

-2
9.
9%

-2
2.
2%

-2
2.
2%

-3
0.
2%

-1
00

%

-1
00

%

-1
00

%

-1
00

%

Reduced inst
All inst

(d) DNAT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

path id

0

20

40

60

80

in

st
ru

ct
io

ns

-8
6.
2%

-8
6.
4%

-1
00

% -8
3.
1%

-8
2.
7%

-9
3.
7%

-1
00

%
-8
6.
4%

-8
6.
5%

-1
00

% -8
3.
3%

-8
2.
9%

-9
3.
8%

-1
00

% -8
4.
8%

-8
5%

-1
00

% -8
1.
2%

-8
0.
6%

-9
2.
7%

-1
00

%
-8
6.
5%

-8
6.
7%

-1
00

% -8
3.
5%

-8
3.
1%

-9
3.
8%

-1
00

%
-8
6.
7%

-8
6.
8%

-1
00

% -8
3.
8%

-8
3.
3%

-9
3.
9%

-1
00

%
-8
6.
5%

-8
6.
7%

-1
00

% -8
3.
5%

-8
3.
1%

-9
3.
8%

-1
00

% -8
4.
2%

-8
4.
4%

-1
00

% -8
0.
3%

-7
9.
7%

-9
2.
3%

-1
00

% -9
4.
9%

Reduced inst
All inst

(e) Suricata

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

path id

0

200

400

600

in

st
ru

ct
io

ns

-1
00

% -3
7.
5% -3

4.
7%

-3
5.
9%

-1
8.
3%

-1
00

%
-2
9.
5%

-4
6.
7%

-2
2.
5%

-1
00

%
-1
00

% -3
5.
9%

-1
00

%
-1
8.
7%

-1
9%

-2
0%

-1
00

%
-1
00

%
-1
00

%
-1
00

%

Reduced inst
All inst

(f) Katran
Figure 5: Number of instructions per program’s control flow path (background bar) vs number of instructions executed
per path with program warping (foreground bar). Program warping reduces the instructions to be executed by 50-100%.

in place (foreground bar). The results show that in many cases
the number of instructions to be executed by the eBPF pro-
cessor is reduced by over 50%, and that anyway in all cases it
is reduced by at least 16.3%. More precisely, an application’s
control flow paths belong to one of two general categories,
based on where their execution is going to be implemented:
(i) Mostly Warp Engine; (ii) and Mixed.

Mostly Warp Engine In all the applications there are at least
a few control paths whose processing is mostly implemented
by the Warp Engine. This is due to the practice of including
in the programs several checks to take an early forwarding
decision. Many of these early decisions are taken to protect
programs from bogus or malicious traffic, which has an in-
teresting implication: program warping may provide higher
performance boosts when it is the most needed. For instance,
some Denial-of-Service attacks’ traffic may be entirely han-
dled by the Warp Engine. Consistently, we can observe that
all the control flow paths of Suricata fall in this category. In
fact, Suricata generates XDP programs to filter network traffic
as early as possible. As a result, in some cases the entire pro-
gram is implemented by the Warp Engine. More generally, in
Figure 5e we can see that the instructions reduction depends
on the specific path, and it is in the range 82%-100%.

Mixed Some control flow paths split their execution between
the Warp Engine and the eBPF processor, either in equal parts
or mostly using the latter. This is the case for, e.g., Router,
Tunnel, and DNAT. In such cases, the packet parsing and
lookup key extraction are delegated to the Warp Engine. The
rest of the application logic, e.g., lookup in a single map and
packet header mangling, is performed by the eBPF processor.
In some programs, this second part is relatively simple. For
instance, we see that program warping reduces the instructions
of these paths by 54%-57% and 51% for Router (Paths 1, 4,
7). In some applications, this second part is instead more
complex. For instance, the Tunnel application’s paths 1 and 4
are reduced by 28% and 33%, respectively. This is the case

Logic Res. Memory Res.
LUTs Reg. BRAM URAM

Corundum (C) + hXDP 10.7% 6.91 % 13.65% 2.34%
C + hXDP + Warp Engine 16.8% 9.86% 14.51% 8.44%

Table 3: FPGA resources usage

since these paths have a large number of instructions that deal
with the packet encapsulation, which happens after a map
lookup. Similarly, in the first six DNAT application paths, the
reduction ranges between 21%-31% due to the high number of
instructions required to recompute the checksum and packet
modifications after the program warping. In Katran’s paths
this is even more evident due to the many lookups in maps
performed in the program’s paths. The reduction, in this case,
ranges from 16.8%-34.7%.

6.4 Warp Engine Hardware Requirements
We now evaluate the FPGA resources required by the Warp
Engine. We compare the requirements with those of the lat-
est hXDP version [4], which is integrated within the Corun-
dum NIC [16] and targets a Xilinx Alveo U50. The U50 is
equipped with a Xilinx Ultrascale+ FPGA, which offers 4
main types of resources that are of interest to us: (i) Lookup-
Tables (LUTs); (ii) registers; (iii) block RAM (BRAM); and
Ultra RAM (URAM). The LUTs and registers are the main
building blocks to implement logic functions, whereas BRAM
and URAM are two different memory blocks provided by the
FPGA. BRAMs provide multi-port access, whereas URAM
have a single read/write port but they are larger than BRAMs.
For all the resource types, the Warp Engine is within our orig-
inal requirement of keeping the packet processing subsystem
below the 20% of the available FPGA resources (Table 3).

6.5 End-to-end performance
We finally test the end-to-end system when processing traffic,
measuring both packet throughout and forwarding latency.

USENIX Association 2022 USENIX Annual Technical Conference 995

Testbed We use two machines: a first machine is equipped
with a 100Gbps Mellanox ConnectX-5 NIC, and it runs a
DPDK-based traffic generator/receiver, capable of sending
traffic at 100Gbps with 64B packets, i.e., ∼150Mpps; the sec-
ond machine is equipped with a single port 100Gbps Xilinx
Alveo U50, connected back-to-back with the first machine.
In all the tests, we measure packet forwarding that is han-
dled entirely within the NIC, and drops. In this last case, we
gain visibility by placing a dedicated drop counter within the
FPGA design. Latency is always measured at the packet gen-
erator’s machine, as difference between the packet reception
and packet sent (hw) timestamps. We do not measure the per-
formance of processing that involves transferring packets to
the host system, since the Corundum’s network driver can for-
ward few Mpps, and it would therefore become the system’s
bottleneck [16]. However, we remark that in terms of Warp
Engine+hXDP design, the transmission to a NIC’s port or to
the PCIe bus is implemented with the same hardware logic,
therefore our system tests are representative of both cases.

Baseline We perform a baseline test to measure throughput
and latency when 100% of program’s instruction are imple-
mented by the Warp Engine. Since the Warp Engine pipeline
performs the same steps for all the applications and execution
paths, the performance is the same in all the cases. That is,
we achieve ∼83Mpps, when performing DROP, and 50Mpps
with a 1µs of per packet end-to-end latency when forward-
ing packets (TX). This is the same performance achieved by
hXDP when running a program with a single instruction.2

In fact, the Warp Engine relies on hXDP to carry out the
forwarding action, and this performance matches the hXDP
baseline performance, confirming that the Warp Engine is
never a bottleneck in our design. In fact, this result holds true
even when forwarding small packets that are larger than the
Warp Engine packet datapath, e.g., 65B long packets.3

Applications Wach application has multiple execution paths,
which are taken depending on the received traffic and applica-
tion’s state. For paths that are 100% processed by the Warp
Engine, the performance is the same of the baseline case, for
all applications and paths. This often provides throughput
improvements of over 10x for such paths (E.g., see last row
of Table 4). For the remaining paths, in the interest of space,
we report the performance for only a subset of them, focusing
on those that are the most frequent cases, or on cases that
are interesting to study the system behavior. In particular, for
L2 ACL, DNAT and Katran, we select the paths correspond-
ing to successful lookups in the maps, which are the most
frequent cases. For instance, this would be the path taken by
established connections in both the DNAT and Katran cases.
For Suricata, we see from Figure 5e a periodic pattern, which
is due to the repetition of several different packet parsing

2hXDP takes 3(5) clock cycles to handle drop(forward), with 64B packets.
3The interested reader can find more insights about the implications of

datapath size on the packet forwarding throughput in [44].

combinations (e.g., including or not multiple levels of VLAN
parsing). Among these, we select the worst case for program
warping, i.e., the path corresponding to the most instructions
executed by hXDP. Finally, for Router and Tunnel, we ana-
lyze traffic traces to select the most common paths that would
be triggered by processing such traffic. For Router, we use a
Datacenter trace [6], and the path handling IPv4 is triggered in
over 80% of the cases. For Tunnel, we use a MAWI trace [28],
and the case IPv4+TCP is triggered in 60% of the cases.

We summarize the results in Table 4. For the selected exe-
cution paths, program warping improves throughput by 1.23x-
3.08x, and increases latency in the worst case by only 104
nanoseconds. We can make two important observations. First,
program warping provides remarkable throughput improve-
ments, nonetheless, comparing to results from Figure 5, it
seems that the tested paths provide a lower-than-expected
speed-up. For instance, for the L2 ACL’s path #1, Figure 5a
shows that only 15% of the instructions should be executed,
which would suggest a potential throughput increase of over
6x. However, our test measures a 1.7x increase. This is the
case since different hXDP instructions have different costs.
For example, a call instruction may cost several clock cycles,
and it also depends on variables such as the lookup key length.
Therefore, the absolute number of instructions at compile
time is not necessarily a good estimator for the achievable
performance at runtime. Furthermore, it is important to no-
tice that the Warp Optimizer works on the eBPF bytecode,
which at a later stage is transformed by the hXDP compiler.
The hXDP compiler may remove some instructions and par-
allelize others, therefore modifying the total program length
(cf. Table 2). A side-effect of this is that the warped instruc-
tions may have been finally removed or parallelized by the
hXDP compiler, which reduces the relative gain obtained by
avoiding their execution. Second, in the case of Katran we
observe a reversed result. Katran’s throughput is improved
to 2.3x, despite Figure 5f shows only an 18.7% reduction for
the path #11’s instructions. This is due to the relatively large
number of (conditional) jumps in the first part of the Katran’s
execution path. These jumps introduce bubbles in the hXDP’s
processor pipeline, lowering throughput and increasing la-
tency. In fact, Table 4 shows that in the case of Katran the
Warp Engine significantly improves also forwarding latency,
lowering it from 1.9µs to 1.5µs.

To put this in perspective, for the Router, Tunnel and DNAT
cases the throughput of hXDP+Warp Engine (clocked at
250MHz) matches that of an Arm Cortex A72’s core clocked
at 2.75GHz (A processor in use in high-end SmartNICs [32]).
For Katran, the throughput is similar to that provided by two
A72’s cores. In the case of L2_ACL and Suricata, our pro-
totype matches the performance of four A72’s cores. More
details about this are provided in Appendix.

996 2022 USENIX Annual Technical Conference USENIX Association

Application Latency [ns] Tput [Mpps] Tput w/WE
[Path ID] w/ WE w/o WE w/ WE w/o WE vs w/o WE

L2 ACL [#1] 1128 1024 9.26 5.43 170.37%
Router [#7] 1304 1212 3.47 2.66 130.58%
Tunnel [#4] 1368 1288 2.84 2.21 128.41%
DNAT [#2] 1444 1364 2.34 1.89 123.36%
Suricata [#46] 1124 1112 10.86 3.52 308.52%
Katran [#11] 1501 1942 2.08 0.90 231.08%

Performance for 100% instruction reduction scenarios
Suricata [#23] (DROP) 82.87 4.31 1824,72%

Table 4: Warp Engine (WE) End-to-End Performance

7 Discussion
Actual Performance Program warping throughput improve-
ment depends on: (i) the XDP program; and (ii) on which
program’s control path is executed. In our evaluations, we
only measured a subset of the program’s paths. In operational
settings, other control paths are likely to be part of the work-
load. In some cases, this may dramatically increase the perfor-
mance gain. For instance, in Suricata, the last row of Table 4
shows the performance for one of the cases in which the Warp
Engine can entirely offload hXDP. In this case, the system pro-
vides an 18.2x throughput increase. It is worth noticing that
these paths are not necessarily uncommon or rarely executed.
On the contrary, often they may represent the most frequently
taken paths. For instance, CloudFlare defines XDP programs
to perform early packet dropping for DDoS protection [7]. In
such applications, these highly boosted paths are expected to
be handling the majority of traffic.
Programming for Performance This last observation high-
lights that the performance of the loaded program is not guar-
anteed, and instead it depends on the received input. While
this is sometimes considered an issue in switching devices [9],
this is an expected behavior for software programmers who
are already used to handle such variability in performance. A
related interesting observation is that programmers can de-
scribe processing rules using if statements and hardcoded
variables and constants, to improve throughput. This is the
same set of techniques used to optimize XDP programs run-
ning within the Linux kernel on x86 processors. That is, pro-
gram warping aligns to both the XDP programming model
and best practices to improve program performance, matching
XDP programmers’ expectations.
Configurability Our current program warping design is quite
general, since the 6 presented applications include a good
variety of cases. Nonetheless, there may be some other appli-
cations for which the Warp Engine resources cannot entirely
describe the instructions that can be warped. While falling
back to the eBPF executor is always a viable option, we also
point out that it is possible to change several parameters of our
design to accommodate different applications (e.g., lookup
key’s size, TCAM entries number, etc.).
Limitations The performance acceleration provided by pro-
gram warping strictly depends on the share of instructions
that a program dedicates to packet parsing and classification.
If the majority of the runtime is spent in other parts of a pro-

gram execution, program warping will only provide small
benefits. Conversely, there could be cases in which the warp
engine cannot offload all the program instructions that can
be in principle warped. For example, this is the case if the
Key Extractor’s pipeline is too short to extract all the data
needed for parsing. In such cases, the Key Extractor and Con-
text Restoration Unit’s pipelines length provides a hard limit
to the maximum number of instructions that can be warped.
Scaling throughput The Warp Engine is not the system’s bot-
tleneck. Therefore, for throughput oriented solutions where
FPGA resources are available, it is possible to envision a de-
sign in which the Warp Engine serves packets to multiple
hXDP modules that work in parallel. Similar high-throughput
solutions is something we plan to explore as future work.
Portability While in this paper we use program warping to
improve hXDP, the approach has more general applicability.
In particular, the Warp Optimizer can be decoupled from the
underlying hardware platform. For example, the extracted
parsing logic can be used to automatically generate packet
parsing programs specified with P4, or to map it to DPDK’s
rte_flow API calls, to configure the underlying NIC packet
parsing capabilities. Here, a challenge is to describe efficient
mechanisms to move the partial execution context from e.g.,
the device subsystem performing header parsing and the sub-
system that executes the remaining part of the program. Thus,
the benefits of the approach vary depending on the specific
target, which opens an interesting opportunity for future re-
search. The Warp Engine design is also portable to different
platforms, beyond FPGAs. In fact, it is a parametrized but
“fixed” pipeline, thereby requiring relatively little changes to
be ported to an ASIC implementation.

8 Related Work
A large number of new NIC designs appeared in the last
few years [17, 20, 27, 32, 34, 41]. These solutions mostly
combine in a mix-and-match manner different compute and
network modules, e.g., regular NIC’s switching ASICs with
general purpose compute clusters based on RISC cores [32],
or FPGA-enhanced switching combined with general pur-
pose clusters [20, 41]. In many of the solutions, a novelty
factor is enabling P4-based programming of the switching
ASIC. This effectively corresponds to replacing the fixed-
function switching module with a programmable switching
module [34]. However, in all these designs the data plane
needs to be explicitly programmed with the provided tools,
e.g., based on P4. Some of these designs offer (partial) eBPF
support. However, they implement eBPF on top of the gen-
eral purpose clusters, replicating the architecture commonly
used in server machines, but on a smaller scale (including
the need to transfer data from the switching ASIC to the
general purpose compute clusters using an internal bus). In
research, previous work addresses the challenges of mov-
ing data among these modules [25], and explores ways to

USENIX Association 2022 USENIX Annual Technical Conference 997

leverage these new NIC designs to improve application per-
formance [12,15,24,26,35,36,43]. Program warping focuses
specifically on the design of the packet switching module, tar-
geting FPGA NICs, and presenting a solution that integrates
with Linux applications that leverage eBPF/XDP. We extend
hXDP [10], which to the best of our knowledge is the only
solution providing full support for XDP on FPGA NIC di-
rectly within the switching module. Compared to hXDP, we
provide better performance introducing a new compilation
step co-designed with a hardware module, the Warp Engine,
which is pipelined to the hXDP processor.

Recent work addressed eBPF programs oprimization at
compile time, targeting x86 processors [29, 42]. These works
share with us the challenge of performing static analysis of
the programs, and leverage some of the insights we discussed
about the eBPF execution model. However, they focus on
implementing compiler techniques targeting a fixed processor
design, whereas we co-design the compiler and the hardware
executor. Another related work is Gallium [43], which targets
the offloading of a program’s part to programmable switching
ASICs. Also in this case, it assumes a fixed set of execu-
tors, including programmable switching chips and processors.
Program warping, instead, introduces both a compiler and
hardware design that integrates with the XDP processor, in
order to push the intermediate computations context directly
within the processor environment.

9 Conclusion
We introduced program warping, a method that leverages
compiler-hardware co-design to accelerate the execution of
eBPF programs running on FPGA NICs. Program warping
enhances existing systems that run eBPF on FPGA NICs with
a new compilation step and adding a hardware module, the
Warp Engine. The compilation step identifies parts of eBPF
programs that can be more efficiently implemented by the
Warp Engine, which offloads them from eBPF processors,
improving throughput (120%-300%, and up to 18x) at the
cost of a small amount of additional FPGA resources. The
crucial insight is that only packet data reads and comparisons
are needed to implement the identified program parts. There-
fore, the Warp Engine supports this minimal set of operations,
thereby achieving speed and efficiency, while eventually con-
cluding packet processing on a regular eBPF processor that
could handle any more complex program’s functions.

Acknowledgements

We thank the anonymous USENIX ATC 2022 shepherd and
reviewers for their valuable feedback. This work has been
partially funded by the European Commission in the frame
of the Horizon 2020 projects 5GMED (grant #951947) and
MARSAL (grant #101017171).

References

[1] Cilium website. https://cilium.io.

[2] Hubble github repository. https://github.com/
cilium/hubble.

[3] P4-NetFPGA. https://github.com/NetFPGA/
P4-NetFPGA-public/wiki.

[4] Pushing xdp into smartnics. https://fosdem.org/
2021/schedule/event/sdn_hxdp_fpga/.

[5] Suricata Documentation. Using Capture Hardware:
eBPF and XDP. https://suricata.readthedocs.
io/en/latest/capture-hardware/ebpf-xdp.
html.

[6] T. Benson. Data set for IMC 2010 data center mea-
surement. http://pages.cs.wisc.edu/~tbenson/
IMC10_Data.html.

[7] G. Bertin. Xdp in practice: integrating xdp into our ddos
mitigation pipeline. In Technical Conference on Linux
Networking, Netdev, volume 2, 2017.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[9] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-
eown, M. Izzard, F. Mujica, and M. Horowitz. Forward-
ing metamorphosis: Fast programmable match-action
processing in hardware for sdn. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM, SIG-
COMM ’13, page 99–110, New York, NY, USA, 2013.
Association for Computing Machinery.

[10] M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli,
G. Siracusano, G. Bianchi, A. Cammarano, A. Palumbo,
L. Petrucci, and R. Bifulco. hxdp: Efficient software
packet processing on FPGA nics. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 973–990. USENIX Association,
Nov. 2020.

[11] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur,
J. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Pa-
pamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger.
A cloud-scale acceleration architecture. In 2016 49th An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–13, 2016.

[12] D. Chiou. The microsoft catapult project. In 2017 IEEE
International Symposium on Workload Characterization
(IISWC), pages 124–124. IEEE, 2017.

998 2022 USENIX Annual Technical Conference USENIX Association

https://cilium.io
https://github.com/cilium/hubble
https://github.com/cilium/hubble
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://fosdem.org/2021/schedule/event/sdn_hxdp_fpga/
https://fosdem.org/2021/schedule/event/sdn_hxdp_fpga/
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html

[13] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Var-
gaftik, A. Berger, G. Mendelson, M. Alizadeh, S.-T.
Chuang, I. Keslassy, A. Orda, and T. Edsall. drmt: Dis-
aggregated programmable switching. In Proceedings
of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, pages 1–14,
New York, NY, USA, 2017. ACM.

[14] Facebook. Katran source code repository. https://
github.com/facebookincubator/katran, 2018.

[15] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, H. K. Chandrappa, S. Chatur-
mohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre,
M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,
A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid,
D. A. Maltz, and A. Greenberg. Azure accelerated net-
working: Smartnics in the public cloud. In 15th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 18), pages 51–66, Renton, WA, Apr.
2018. USENIX Association.

[16] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen.
Corundum: An open-source 100-Gbps NIC. In 28th
IEEE International Symposium on Field-Programmable
Custom Computing Machines, 2020.

[17] Fungible, Inc. S1 DPU Product
Brief. https://www.fungible.com/
wp-content/uploads/2021/01/PB0029.01.
12020113-Fungible-S1-Data-Processing-Unit.
pdf.

[18] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown.
Design principles for packet parsers. In Proceedings of
the Ninth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’13,
page 13–24. IEEE Press, 2013.

[19] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann,
J. Fastabend, T. Herbert, D. Ahern, and D. Miller. The
express data path: Fast programmable packet process-
ing in the operating system kernel. In Proceedings of
the 14th International Conference on Emerging Net-
working EXperiments and Technologies, CoNEXT ’18,
page 54–66, New York, NY, USA, 2018. Association
for Computing Machinery.

[20] Intel Corporation. Infrastructure Processing Units
(IPUs). https://www.intel.com/content/www/us/
en/products/network-io/smartnic.html.

[21] Intel Corporation. 5G Wireless. https:
//www.intel.com/content/www/us/en/
communications/products/programmable/
applications/baseband.html, 2020.

[22] IOVisor Project. uBPF repository. https://github.
com/iovisor/ubpf.

[23] D. Korolija, T. Roscoe, and G. Alonso. Do OS abstrac-
tions make sense on fpgas? In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 991–1010. USENIX Association, Nov.
2020.

[24] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, P. Cheng, and E. Chen. Clicknp: Highly flexi-
ble and high performance network processing with re-
configurable hardware. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 1–14,
New York, NY, USA, 2016. Association for Computing
Machinery.

[25] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and
A. Akella. PANIC: A high-performance programmable
NIC for multi-tenant networks. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 243–259. USENIX Association, Nov.
2020.

[26] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Pe-
ter, and K. Gupta. Offloading distributed applications
onto smartnics using ipipe. In Proceedings of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’19, page 318–333, New York, NY, USA, 2019.
Association for Computing Machinery.

[27] Marvell Technology, Inc. Data Processing
Units. https://www.marvell.com/products/
data-processing-units.html.

[28] MAWI. MAWILab traffic trace - samplepoint f
- 2021-03-22. https://mawi.wide.ad.jp/mawi/
samplepoint-F/2021/202103221400.html.

[29] S. Miano, A. Sanaee, F. Risso, G. Rétvári, and G. Antichi.
Dynamic recompilation of software network services
with morpheus, 2021.

[30] NEC. Building an Open vRAN Ecosystem
White Paper. https://www.nec.com/en/global/
solutions/5g/index.html, 2020.

[31] Netronome. AgilioTM CX 2x40GbE intelligent server
adapter. https://www.netronome.com/media/
redactor_files/PB_Agilio_CX_2x40GbE.pdf.

[32] NVIDIA Corporation. NVIDIA BlueField data process-
ing unit (DPU). https://www.nvidia.com/en-us/
networking/products/data-processing-unit/.

[33] Orange. OKO. https://github.com/
Orange-OpenSource/oko.

USENIX Association 2022 USENIX Annual Technical Conference 999

https://github.com/ facebookincubator/katran
https://github.com/ facebookincubator/katran
https://www.fungible.com/wp-content/uploads/2021/01/PB0029.01.12020113-Fungible-S1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2021/01/PB0029.01.12020113-Fungible-S1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2021/01/PB0029.01.12020113-Fungible-S1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2021/01/PB0029.01.12020113-Fungible-S1-Data-Processing-Unit.pdf
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/communications/products/programmable/applications/baseband.html
https://www.intel.com/content/www/us/en/communications/products/programmable/applications/baseband.html
https://www.intel.com/content/www/us/en/communications/products/programmable/applications/baseband.html
https://www.intel.com/content/www/us/en/communications/products/programmable/applications/baseband.html
https://github.com/iovisor/ubpf
https://github.com/iovisor/ubpf
https://www.marvell.com/products/data-processing-units.html
https://www.marvell.com/products/data-processing-units.html
https://mawi.wide.ad.jp/mawi/samplepoint-F/2021/202103221400.html
https://mawi.wide.ad.jp/mawi/samplepoint-F/2021/202103221400.html
https://www.nec.com/en/global/solutions/5g/index.html
https://www.nec.com/en/global/solutions/5g/index.html
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://github.com/Orange-OpenSource/oko
https://github.com/Orange-OpenSource/oko

[34] Pensando Systems. Pensando DSC-100 Product Brief.
https://pensando.io/wp-content/uploads/
2020/03/Pensando-DSC-100-Product-Brief.pdf.

[35] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter,
R. Bodik, and T. Anderson. Floem: A programming
system for nic-accelerated network applications. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 663–679, Carlsbad,
CA, Oct. 2018. USENIX Association.

[36] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone,
M. Spaziani, V. Bruschi, D. Sanvito, G. Siracusano,
A. Capone, M. Honda, F. Huici, and G. Siracusano.
Flowblaze: Stateful packet processing in hardware. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 531–548, Boston,
MA, Feb. 2019. USENIX Association.

[37] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Al-
izadeh, H. Balakrishnan, G. Varghese, N. McKeown, and
S. Licking. Packet transactions: High-level program-
ming for line-rate switches. In ACM SIGCOMM ’16,
ACM SIGCOMM ’16, pages 15–28. ACM, 2016.

[38] N. Sultana, S. Galea, D. Greaves, M. Wojcik, J. Shipton,
R. Clegg, L. Mai, P. Bressana, R. Soulé, R. Mortier,
P. Costa, P. Pietzuch, J. Crowcroft, A. W. Moore, and
N. Zilberman. Emu: Rapid prototyping of networking
services. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 459–471, Santa Clara, CA,
July 2017. USENIX Association.

[39] Suricata. Suricata IDS Website. https://suricata.
io/.

[40] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivas-
tav, N. Foster, and H. Weatherspoon. P4fpga: A rapid
prototyping framework for p4. In Proceedings of the
Symposium on SDN Research, SOSR ’17, page 122–135,
New York, NY, USA, 2017. Association for Computing
Machinery.

[41] Xilinx, Inc. Alveo SN1000 SmartNIC. https:
//www.xilinx.com/applications/data-center/
network-acceleration/alveo-sn1000.html.

[42] Q. Xu, M. D. Wong, T. Wagle, S. Narayana, and
A. Sivaraman. Synthesizing safe and efficient kernel
extensions for packet processing. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM
’21, page 50–64, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

[43] K. Zhang, D. Zhuo, and A. Krishnamurthy. Gal-
lium: Automated software middlebox offloading to pro-
grammable switches. In Proceedings of the Annual

Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, page 283–295, New York, NY,
USA, 2020. Association for Computing Machinery.

[44] N. Zilberman, G. Bracha, and G. Schzukin. Stardust:
Divide and conquer in the data center network. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 141–160, Boston, MA,
Feb. 2019. USENIX Association.

1000 2022 USENIX Annual Technical Conference USENIX Association

https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf
https://suricata.io/
https://suricata.io/
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html

Appendices

A Warp Engine Parameters
In Table 5 we report a subset of the parameters that can be con-
figured in the Warp Engine. This is helpful to accommodate
different workloads, or to tune the FPGA resources require-
ments to the workload of interest in the specific deployment.
For instance, there may be cases in which a packet chunk of
64B is sufficient to extract the entire packet context. Likewise,
there may be needs to extend the lookup key beyond 16B, etc.

Parameter Val. Description
Packet
chunk
size

128B Number of packet’s bytes that can be read to
build the lookup key (also affects the TCAM
entries width).

Lookup
key size

16B Size of the lookup key used in the match-
action unit

Key Ex-
tractor
Stages

12 Corresponds to the maximum number of dif-
ferent places that can be read in the packet
chunk

Key Ex-
tractor
read size

2B Maximum number of contiguous bytes that
can be read by each Key Extractor’s stage
(also affects the maximum size of the con-
stant value used for the bitwise operation)

TCAM
entries

64 Maximum number of match-action entries
that can be configured by the Warp Opti-
mizer for a given program

Stack
Extractor
Stages

10 Corresponds to the maximum number of dif-
ferent places that can be read in the packet
chunk

Stack
buffer

136B Maximum number of stack bytes that can
be restored

Stack
Extractor
read size

8B Maximum number of contiguous bytes that
can be read by each Stack Extractor’s stage
(also affects the maximum size of the con-
stant value used for the bitwise operation)

Reg. Ex-
tractor
Stages

9 Corresponds to the maximum number of dif-
ferent places that can be read in the packet
chunk

Reg. Ex-
tractor
read size

8B Maximum number of contiguous bytes that
can be read by each Stack Extractor’s stage
(also affects the maximum size of the con-
stant value used for the bitwise operation)

Table 5: Warp Engine’s main design parameters, and the val-
ues used for the design tested in this paper.

B Applications
Here we report a slightly more detailed description of the
application used during our system evaluation (and reported
in the paper).
L2 ACL (Running example). This is the application we
used as running example, and described in Section 3.1. It
includes three branches: the main processing branch handles
IPv4 packets and checks whether the source MAC address is
present in the access list; the other two branches handle IPv6

packets, which are always dropped), and any packet that is
not IP, which is passed to the networking stack.
Dynamic NAT. Network Address Translation (NAT) for
flows coming from a LAN and destined to a public net-
work, and reverse translation. The application has two main
branches: (i) one for packets originated from the the LAN,
and (ii) the other for those coming from the public network.
When a flow’s first packet from the LAN is processed, the
application selects a new NATed port, and saves it in the NAT
binding table using the 5-tuple as flow identifier. Then it per-
forms address translation and forwards the packet. For any
following flow’s packet, the application retrieves the NATed
port, and performs address translation accordingly. In a sim-
ilar way, packets from the public network are subject to a
reverse NAT if there is a corresponding entry in the NAT
binding table, or they are dropped otherwise.
XDP Router. An implementation of an IPv4/IPv6 router, pro-
vided as eBPF application example with the Linux Kernel. It
performs parsing of L2 and L3 headers, and then a lookup in
two tables to take a packet routing decision. The first table is
an exact match table that looks up the entire IP destination
address. If the lookup in the first table fails, the application
performs a second lookup in a Longest Prefix Match (LPM)
table.
XDP TX Tunnel. This is another eBPF application example
provided by the Linux Kernel. It performs IPinIP encapsula-
tion matching on destination IP address and destination L4
port. The application works with both IPv4 and IPv6, with
the two main processing branches handling these two cases
to assign the proper IPv4 or IPv6 encapsulation. A lookup in
a hashtable matches on the destination virtual IP address to
retrieve the tunnelling information.
Suricata IDS. Suricata [39] is a software Intrusion Detection
System (IDS). Among its multiple features, it provides an
XDP program that works as a filter, to perform early dropping
of undesired flows. The XDP program contains a large number
of processing branches to handle all the combinations of
stacked 802.1Q and 802.1AD VLAN headers. After VLAN
parsing, it processes differently IPv4 and IPv6 packets, and
performs a lookup in a hashmap providing the 5-tuple plus
the (optional) VLAN identifiers to take some of the filtering
decisions.
Katran. Katran [14] is an XDP-based Layer 4 load balancer.
It encapsulates packets with a specific destination Virtual IP
addresses and balances the connections towards the available
servers. The first part of the processing includes L3 parsing
and handling of ICMP/ICMPv6 protocols, for early response
to echo request messages. Then, a first map lookup retrieves
the virtual IP information. The application uses this informa-
tion to query a Least Recently Used (LRU) map, in order to
fetch the address of a connection table. A query to the connec-
tion table finally retries the real IP address of the destination
server. If a destination is not found, and the packet has the
SYN flag set, then Katran installs a new forwarding rule in

USENIX Association 2022 USENIX Annual Technical Conference 1001

the connection table to ensure forwarding consistency for the
following packets of that flow.

C Software Emulator

For some of the Warp Optimizer evaluations, we used a Warp
Engine emulator based on uBPF [22]. Here we give additional
details about such implementation.

M
A
T

MAPS

xdp
prog

input
pcap

PC, context

eBPF executor

action XDP

action MAP

drop

abort

pass

tx

user space XDP engine

Figure 6: MAT+uBPF Architecture

uBPF is an open source project that implements an eBPF
processor in userspace. Unfortunately, out of the box, uBPF
misses relevant functional blocks, such as maps. We therefore
used OKO [33], an open source project providing an eBPF
engine for OpenVSwitch, to enhance uBPF with the OKO’s
maps and helper functions implementations. Starting from this
basis, we further extended this implementation to include any
additional feature required by the Warp Engine (cf Figure 6).

Our implementation takes several input files to configure
its internal modules. First, we implemented a program that
reads the ELF files provided by the standard LLVM eBPF
compiler, and which creates as output:

1. a text file containing the eBPF instructions, formatted as
a sequence of bytes representing the 64bit instructions
of the program;

2. a JSON file describing the XDP program’s map defini-
tions. Such information includes the key size, value size,
number of entries and type of map (array, hashmap, etc.).

These two files are provided to our software emulator to con-
figure the eBPF executor, and create the maps required by the
program.

The emulator’s Warp Engine module implements a Match
Action Table (MAT) with ternary match values. The MAT is
configured using the output generated by the Warp Optimizer.
uBPF execution The emulator takes packet in input by read-
ing a PCAP file. It can then be run in two different modes of
operation: with the software Warp Engine disabled; and with
the software Warp Engine enabled.

In the first case, the MAT is bypassed and the packet is
directly fed to the eBPF executor, which applies the eBPF in-
structions on the packet data. With the MAT enabled, instead,
the packet data is used to extract the fields needed to perform

a lookup in the MAT. The matched entry contains the action
that must be performed on the packet, that is:

• a standard XDP return code (DROP, ABORT, PASS and
TX), so in this case the packet bypasses the eBPF execu-
tion stage;

• a context restoration action, which contains the informa-
tion to construct and restore the context.

In case of context restoration, we copy the registers and
stack values as described in the action (which is configured
from the Warp Engine’s output). Then, in any case, the pro-
gram counter is updated with the one required by the matched
action, and the regular eBPF execution starts. Finally, the
emulator outputs a number of global and per-packet statistics:

• one PCAP trace for each XDP return code, for packets
that have been subject to the DROP, PASS, ABORT and
TX XDP actions;

• the list of instructions executed for each packet;
• the number of instructions actually executed;
• the number of times a rule in the Match Action Table

has been matched.
These statistics have been collected to construct the results
shown in Section 6.

D Functional Equivalence

We provide more details about the strategy we used to check
functional equivalence of programs running with and without
program working. In particular, we validate the equivalence
of running an eBPF program in our accelerated system and
running the same program in the standard Linux kernel XDP
implementation. First, we analyze the behavioral equivalence,
i.e. that the packets out of the Linux kernel implementation
exactly match the packets in output from our software im-
plementation. This is a black-box test and has two outcomes:
(i) it validates the equivalence between the standard imple-
mentation and our accelerated version, and (ii) it validates the
correctness of our software prototype. For what concerns the
test cases, for each application we use synthetic packet traces
in which each packet exactly matches one entry in the Match
Action Table. We run an eBPF program with and without
the MAT enabled and compare the output packet traces. We
obtain the behavioral equivalence by verifying that the two
outputs match exactly, in terms of packet data and associated
XDP action.

Nonetheless, a careful choice of the test cases should take
into account all the possible inputs such that the totality of
the eBPF instructions of a program are covered. For example,
in the NAT application, the first packet of a new connection
matches the same entry of subsequent packets, but for the
first packet the processing is different, and the instructions
covered are different as well. In other words, we should take
into account the state updates in the execution of a program.
To validate the correctness of our test cases to cover the entire
set of program’s instructions, for each application we crafted

1002 2022 USENIX Annual Technical Conference USENIX Association

the packets to cover all the branches in the Control Flow
Graph, along with the correct configuration of the eBPF map
entries. For every use case considered, we achieved the full
program instructions coverage. We verified this by checking
that the enumerated instructions represent the totality of the
original program.

In the case of Katran, we used a simplified version by
removing some parts of the code for which the instructions
could not be executed. For example, some portions of the
Katran code rely of timeouts triggering a certain condition.
Since our uBPF prototype does not implement timers, we
removed those program parts. In any case, all the instructions
that are not covered by our tests always happen after the
warped part of the program, therefore we could still verify
that program warping does not modify in any way a program’s
behavior.

E Comparison with commercial SmartNICs

In Section 6 we compare our prototype only with hXDP. This
is the case since we are not aware of any other NIC platform
that supports running unmodified eBPF in the network data
plane.4 Furthermore, we are interested in evaluating the spe-
cific contribution of program warping to FPGA-based eBPF
executors, and less concerned with the evaluation of packet
processing when using different platforms. However, when
looking more generally supporting eBPF on a NIC, some re-
cent commercial NICs that include battery of general purpose
CPUs can indeed run unmodified XDP programs.

It should be clear that comparing our program warping
prototype with such systems is not generally correct from a
technical perspective, since the goals, constraints and scopes
of application are too different to devise a fair testing strat-
egy. For instance, a more direct comparison of the packet
forwarding data plane component would require an ASIC-
based implementation of program warping.

While we are aware of the above, we believe that the com-
parison may still be useful for practitioners who may be in-
terested in evaluating FPGA NIC solutions vs alternatives.
Therefore we decided to at least include such tests in this
appendix for the interested reader.
NVIDIA Bluefield2 architecture We tested the XDP pro-
grams performance on an NVIDIA Bluefield2 NIC [32] (in
NVIDIA terminology, these devices are currently called Data
Processing Units, or DPUs). The Bluefield2 combines two
main subsystems: a switching data plane based on the Mel-
lanox ConnectX6 architecture; and a battery of 8 general
purpose Arm A72 CPUs running at up to 2.75GHz. The Con-
nectX6 receives the packets from the network ports and can
forward them directly to the host system, like a regular NIC,

4In fact, Netronome SmartNICs [31] support eBPF, but only in a limited
form, and therefore packet processing programs need to be rewritten for the
specific Netronome’s capabilities.

Figure 7: Forwarding throughput for the applica-
tions described in Section 6, when running on hXDP,
hXDP+Warp Engine, and on 1-4 cores of an NVIDIA
Bluefield2’s CPUs.

or it can re-direct them to the Arm CPUs. Here, further pro-
cessing can happen, and the packets can be either consumed
locally, or sent back once more to the ConnectX6, to be finally
delivered to the host system or to the network port.
Experiments We use the experimental setup, applications
and testing strategy described in Section 6 to evaluate the
packet forwarding performance of the Bluefield2, when using
the Arm CPUs. Figure 7 shows the results.

Like already explained in Section 6, we report the results
only for a subset of the application paths. For Router, Tunnel
and DNAT, the hXDP+Warp Engine combination achieves a
higher throughput than an Arm core clocked at over 10x the
hXDP clock frequency. For Katran, our prototype is close to
the performance provided by two cores. Finally, in the case
of L2_ACL and Suricata, the hXDP+Warp Engine achieves a
forwarding throughput roughly equivalent (or close) to 4 Arm
cores instead.

These results show that in favorable cases program warping
can indeed boost the performance of an FPGA-based proces-
sor to match that of several hardcoded cores running at much
higher frequency. This suggests that a practitioner will require
a careful workload analysis if the choice of an FPGA NIC
is not mandated by other deployment requirements5, since
the performance is use case dependent. In any case, program
warping provides a viable solutions to run eBPF software
packet processing in environments where an FPGA NIC is
required.

5Requirements may not be necessarily related to the need of hosting
FPGA-based accelerators. They may also include considerations on power
consumption and type of board cooling.

USENIX Association 2022 USENIX Annual Technical Conference 1003

	Introduction
	Goal, Requirements and Challenges
	Concept and Background
	Background: eBPF and XDP
	Program Warping
	System Design

	Warp Optimizer
	Program analysis
	Match-action rules generation

	Warp Engine
	Key Extractor
	Match-action Unit
	Context Restoration Unit
	Integration with hXDP
	Implementation

	Evaluation
	Applications
	Functional Equivalence
	Warped instructions
	Warp Engine Hardware Requirements
	End-to-end performance

	Discussion
	Related Work
	Conclusion
	Appendices
	Warp Engine Parameters
	Applications
	Software Emulator
	Functional Equivalence
	Comparison with commercial SmartNICs

