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Abstract—A significant challenge in 802.11p based vehicular
ad hoc networks (VANETs) is that the cooperative awareness
messages (CAMs) tend to experience collisions. In this paper,
we propose an adaptive CAM messaging algorithm based on
the emerging methodology of the age of information (AoI). Our
objective is to minimize an age-penalty function in a trajectory
prediction application. In our design, each vehicle will compute a
local penalty which serves as an indicator on whether the CAM
messaging frequency is appropriate for its mobility status; and
at the same time, calculates an appropriate penalty associated
with all its neighbors which serves as an indicator regarding
the impact of network congestion on the trajectory prediction
quality. The aggregated penalty score integrating both the local
and neighboring parts will be used to adaptively control the CAM
sending frequency. We are to present simulation results demon-
strating that our adaptive messaging method can indeed mitigate
network congestion while meet the driving safety requirements.

Index Terms—adaptive messaging, AoI, CAMs, trajectory
prediction, VANETs

I. INTRODUCTION

The rapid development of vehicular technologies and mobile
communication networks has transformed the traditional road
transportation into the modern paradigm of intelligent trans-
portation systems (ITS) [1]–[3]. A key element of ITS is the
vehicular ad-hoc network (VANET), where vehicles and road-
side infrastructure can form a multiple-hop ad hoc network,
accessing Internet through vehicle-to-vehicle and vehicle-to-
infrastructure communications [4]. VANETs are expected to
enable a wide scope of applications for entertainment and
driving safety. To facilitate safety applications, each vehicle is
equipped with multiple types of sensors that generate safety-
critical and time-varying data (e.g position, speed, heading,
and acceleration), termed as cooperative awareness messages
(CAMs), and broadcast the messages to all neighboring nodes
within their communication range [5]. The performance of
VANET fundamentally depends on the medium access control
(MAC) protocol, where a distributed carrier sensing multiple
access (CSMA) based protocol, defined in the IEEE 802.11p
standard, is the popular MAC protocol for VANETs.

A significant challenge in 802.11p based VANETs is that the
CAMs tend to experience collisions, especially in a congested
situation, for example, a jammed traffic light with many
vehicles queued on the road. As the CAMs are broadcasted
without acknowledgement, serious collisions will cause the

dropping of many CAMs, and thus, seriously impact the
driving safety. In fact, it is possible to reduce unnecessary
CAMs to mitigate the network congestion. For example, when
vehicles are statically queued at a traffic light or move in a
constant speed, the frequency of broadcasting CAMs can be
reduced without impacting the safety applications. To achieve
a stable and reliable VANET, thus, requires knowledge of
the mobility pattern of vehicles. Considering the application-
level requirement of improved driving safety, the wireless
channel of a typical VANET is usually constrained by in-
terference and collisions. As part of the design requirements
for ITS, the European Telecommunication Standards Insti-
tute (ETSI) included a mandatory Decentralized Congestion
Control (DCC) component in the access layer of the ITS-
G5 protocol stack to reduce range degradation, radio channel
overload, and self-interference [6], [7]. However, the DCC is
limited to restricting the number of messages that each vehicle
sends into the wireless channel, based on the channel busy
ratio (CBR) [8]. We opine that the DCC does not justify
the basis for congestion control from the application-level
perspective. Beyond the DCC, more attention has been given
to the mobility, routing and scheduling issues in VANETs,
towards improving driving safety and achieving low latency
in packet delivery [1], [9], [10]. However, only few studies
have examined the application-level problems in VANET, such
as the relevance and freshness of CAMs, which relies on
the sampling frequency; these are complex optimization tasks,
especially when congestion is critical.

In this paper, we propose an adaptive CAM messaging
algorithm based on the emerging methodology of the age
of information (AoI) [11]. The underpinning problem is that
the frequency of sending CAMs is not monotonically related
to the quality of the safety applications. Too frequent CAM
messaging tends to cause network congestions, which will then
negatively impact the safety application; too sparse messaging
by a vehicle, otherwise, will not be enough for the neigh-
boring ones to timely obtain its speed/location information
and negatively impact the safety applications too. The AoI
methodology exactly targets at the analysis of the complex
interplay among sampling frequency of sensing messages, the
sojourn time of those messages in the networking systems, and
the information freshness at the receiving node, and is quite
suitable for studying the CAM frequency issue in VANETs.

Some related works have proposed AoI as an application978-1-6654-3540-6/22 © 2022 IEEE



metric for determining the frequency of CAMs generation. The
design of an analytical model that statically sets the time inter-
val between two consecutive beacon message generation has
helped to minimize the AoI metric, but suffers performance
degradation when the vehicle density is high [12]. Similarly,
an information-age-aware method was proposed in [8] to
configure the legacy ETSI DCC mechanism, while minimizing
AoI and achieving satisfactory channel busy ratio (CBR). The
method adopted platooning for the ITS application, where a
human driver leads other vehicles behind it, and the other
vehicles depend on the CAMs that is being exchanged [8],
[13]. With this method, the benefit of autonomous driving in
VANET is lost and we opine that the CBR is not sufficient to
reflect traffic congestion in VANETs; this is because vehicles
tend to have different mobility patterns.

To address some of the challenges highlighted from pre-
vious works, and considering the application-level problems
in VANETs, in this paper, we rely on AoI-based analysis to
adaptively adjust the CAM sending frequency at a vehicle
based on the network congestion level and the vehicle mobility
states, while guarantee the driving safety. Specifically, the AoI
at a certain moment at a receiving node is defined as the time
that has elapsed since the generation time (at the sending node)
of the latest message it received. A non-decreasing function
of the AoI, termed as an age-penalty function [11], [14]
can be defined to link the AoI with more human-perceptible
application performance. In our scenario, we use a trajectory
prediction application to evaluate the driving safety through
CAM messaging. That is, one vehicle A will predict the
current location and speed of a neighboring vehicle B based
on the latest CAM generated by vehicle B and the AoI of that
message. The deviation of the predicted trajectory from the
true value is defined as our age-penalty function, termed as
pAoI .

In our design, each vehicle will compute a local penalty
pAoIlocal based on its GPS ground truth and its own CAMs;
the local penalty serves as an indicator on whether the CAM
sampling frequency is appropriate for its mobility status.
At the same time, each vehicle also calculates a penalty
pAoIneighbors with weighted averaging over penalties asso-
ciated with all its neighbors; the neighboring penalty serves
as an indicator regarding the impact of network congestion on
trajectory prediction quality. The aggregated penalty score in-
tegrating both pAoIlocal and pAoIneighbors, compared against
a predefined threshold based on security criteria, will be used
to adaptively control the CAM sending frequency. We are to
present simulation results demonstrating that our adaptive mes-
saging method can indeed control the CAM sending frequency
at an appropriate level while balancing the network congestion
level and driving safety requirements.

The remainder of this paper is organized as follows. We
describe the system model in Section II. We discuss our adap-
tive cooperative awareness messaging algorithm in Section
III. Next comes the numerical results in Section IV, and the
conclusion in Section V.

II. SYSTEM MODEL

A. Cooperative Awareness Messaging in VANETs

The ITS in most of its applications ensures that nodes
generate CAMs to achieve connectivity, automation and driv-
ing safety. Specifically, in VANETs, nodes usually generate
and broadcast CAMs independently, and because the wireless
channel is shared, there is a significantly large probability
for congestion and collision of CAMs, especially with larger
number of vehicles. Fig. 1 shows a typical VANET scenario
where the driving safety of autonomous vehicles is negatively
impacted by the congestion of CAMs. Since the information
contained in CAMs are safety-critical and time-dependent, it
is important that each node has up-to-date knowledge about
the trajectory of other nodes within its communication range.
For most applications, the CAMs usually contain the speed,
position, acceleration and other vehicle-related parameters.
The timeliness of the CAMs forms the basis for decision
making in a VANET; such decisions can include the rate
of maneuver of a vehicle at a given time. However, we
need to understand that CAMs are periodic updates which
are timestamped and carry critical data; thus, we require the
AoI metric, which measures the degree of freshness of status
updates. This metric helps to facilitate the prediction of a
vehicle’s trajectory.

Fig. 1. Driving safety impacted by CAMs congestion in VANET

B. Age of Information Basics

The concept of age of information, popularly referred to
as AoI or simply age has emerged in network research to
analyse the difference and relationship between network delay
and freshness of updates [11]. This is because timely updating
is not the same as having updates with minimum delay [11],
[14], [15]. In a complex system, such as VANETs, a source
broadcasts fresh CAMs to the network, which is delivered to
destination nodes; each node keeps track of the age of CAMs
and uses it to make application-level decisions. For example,
a node that receives an update with timestamp u is said to
have age t− u at a time t ≥ u. An update is said to be fresh
when its timestamp is the current time t and its age is zero.
When the freshest received update at time t has time-stamp
u(t), then, the age [11] is a random process:

∆(t) = t− u (t) (1)

Consider that fresh updates are sent at times t1, t2, ..., tn
and received at corresponding times t′1, t

′
2, ..., t

′
n, this yields to



sawtooth shape function which reflects the age of the updates
when it is delivered at the destination. Since in the absence
of updates, the age ∆(t) grows linearly at a unit rate, this
means that the last received update gets stale until a fresh one
arrives. Although, the AoI ∆(t) grows linearly over time, the
performance degradation due to information aging may not
always be a linear function of time [11]. In the literature, the
dissatisfaction with information staleness can be represented
by a non-decreasing age-penalty function p(∆(t)).

C. Adaptive CAMs meeting the Safety Requirements

Our objective is to design a mechanism for a vehicle to
adaptively adjust its CAM messaging frequency based on its
own mobility pattern and the network congestion level, while
meet the safety requirement. We use a trajectory prediction
application to evaluate the driving safety through CAM mes-
saging. That is, one vehicle A will predict the current location
and speed of a neighboring vehicle B based on the latest
CAM generated by vehicle B and the AoI of that message.
The deviation of the predicted trajectory from the true value
is defined as our age-penalty function. Hence, our adaptive
messaging aims to minimize the penalty function.

III. ADAPTIVE COOPERATIVE AWARENESS MESSAGING

In this part, we will first present the modeling details of our
trajectory prediction application and then give the details of
our adaptive messaging protocol.

A. Trajectory Prediction

When vehicle A generates a CAM at t1, it contains its tra-
jectory g⃗t1 , that is, position p1xy

, speed ⃗v1xy
, and acceleration

⃗a1xy . At a time t2 (> t1) before another CAM, this CAM
message can be leveraged by vehicle A itself or a neighbor of
A to predict the trajectory g⃗t2 of A at t2 as follows:

∆(t2) = t2 − t1 (2)

g⃗t2
′ =

p1xy + ⃗v1xy∆(t2) +
1
2 ⃗a1xy∆(t2)

2

⃗v1xy + ⃗a1xy∆(t2)
⃗a1xy

 (3)

where ∆(t2) is the AoI of the CAM at t2. We use g⃗t2 and
g⃗t2

′ to denote the true trajectory and predicted trajectory of
vehicle A respectively. Both g⃗t2 and g⃗t2

′ are considered as
column vectors with each element representing position, speed
and acceleration.

slot 1 slot 2 slot i slot Nslot i+2slot i+1

slot 1 slot 2 slot j slot Nslot j+2slot j+1

t0 t1 ti+2
ti+1tit2

t0 t1 ti+2
ti+1tit2

tN

tN Vehicle B

Vehicle A

Fig. 2. CAMs scheduling in VANET

B. Age-penalty Function in VANETs

The measure of dissatisfaction caused by the linear growth
of AoI of CAMs, which is characterized by the non-decreasing
age-penalty function p(∆(t)), is used as an application-level
metric to control when it is appropriate to send a new CAM.
To meet the driving safety requirement in VANET, we define
age-penalty p(∆(ti)) as the square root of l2Norm between
the true vehicle position pixy

and the predicted vehicle position
p′ixy

. That is,

p(∆(ti)) =

√∣∣∣∣∣∣pixy , p
′
ixy

∣∣∣∣∣∣, ∀i ∈ {1, 2, ..., N}. (4)

Note that our age penalty function has the physical meaning
of distance and is an appropriate metric to evaluate driving
safety.

We use Fig. 2 to illustrate the scheduling of CAMs, where
each slot has a fixed time-frame, within which a vehicle can
receive or send CAMs to its neighbors. When vehicle A and
vehicle B both send CAMs to each other at time t0, the CAM is
received before the end of duration of slot 1. Each vehicle uses
the AoI of it’s last received CAM to predict the next trajectory
of its neighbor before the end of slot 2. The decision to delay
CAMs or send CAMs immediately, depends on the trajectory
prediction quality, which reflects the level of congestion in the
network; this is based on the age penalty function. As shown
in Fig. 2, at t2, ti+1, and tN , vehicle A did not receive any
message from vehicle B; at ti and ti+2, vehicle B did not
receive any message from vehicle A, each represented by red
broken lines. The AoI function based on the CAMs sending
frequency is shown in Fig. 3.

t0 t1 ti+2ti+1tit2 tN

Age

time t0 t1 ti+2ti+1tit2 tN

Age

time

B
(t)

A
(t)

Destination

Source

A

Destination

(t)

B
Source

(t)

Fig. 3. AoI process in a simple VANET

C. Local Penalty and Neighbor Penalty

The equations (3) can be used by vehicle A to compute a
local penalty over its own CAMs. The local penalty can serve
the important purpose to evaluate whether the CAM messaging
freqency is appropriate regarding its current mobility pattern.
For example, if the current CAM messaging interval is large
and vehicle A is doing rapid acceleration, the computed local
penalty will be large.

The ultimate goal of CAM messaging from a vehicle A is
for A’s neighboring vehicles to correctly predict the trajectory
of vehicle A, thus maintaining safe distance in driving. We thus
compute a neighbor penalty for this purpose. The neighbor
penalty serves as an indicator regarding the impact of network
congestion on trajectory prediction quality. As illustrated in
Fig. 3, if vehicle B didn’t receive vehicle A’s CAM due to



network congestion (that caused the dropping of the message),
it will get a large penalty in predicting A’s trajectory.

A challenge in computing neighbor penalties in a distributed
environment is that it is hard for vehicle A to know how
accurate its neighbor B could predict its trajectory. To address
this issue, we leverage a symmetric assumption: for any
two neighboring vehicles A and B communicating with the
same channel, the trajectory prediction accuracy of vehicle B
regarding vehicle A, its neighbor, is roughly the same as that
of vehicle A regarding vehicle B.

D. Adaptive Messaging Algorithm

Based on the symmetric assumption where each vehicle
gets the knowledge about its local age-penalty and that of its
neighbors, it becomes realistic to adaptively adjust the sending
frequency of CAMs, while still meeting the driving safety
requirement in VANETs.

In contrast with a computer network, for VANETs, conges-
tion control is usually affected by driving patterns such as the
mobility and speed of vehicles, which cannot be optimized by
merely restricting the number of messages that each vehicle
sends into the wireless channel, based on the CBR. For
example, a slight change in the speed of a vehicle can affect the
application-level decision making processes of other vehicles
in the network, where status updates are critical and time-
dependent.

To achieve the driving safety requirement based on AoI, the
decision regarding when it is important to send a measured
trajectory through CAMs is, thus, regulated by comparing the
age-penalty score p(∆(t))score, which is the weighted average
between the local age-penalty of the source node and that of
its neighbors, against a predefined threshold p∗(∆(t)) based
on security criteria. Every time there is a new CAM (generated
every 100 ms in our experiment), each vehicle computes its
local age-penalty p(∆(t))local. It then uses the CAMs received
from neighboring vehicles to compute p(∆(t))neighbors as
described in Algorithm 1, where the weight wj of the age-
penalty for each node is a function of the normalized distance
zj and the time uj(t) since the last update was received. For
example, the further any node is from the source node, the
less relevant is the information.

On the other hand, when more time has elapsed since the
last received update, the more relevant is the age-penalty of
the node. The age-penalty score can, thus, be obtained.

p(∆(t))score = αp(∆(t))local+(1−α)
∑
j ̸=i

wjpij(∆(t)) (5)

where pij(∆(t)) is the age-penalty of node j computed at
node i and α ∈ [0, 1] is a controlling parameter, which can be
determined based on experiments. The remaining parameters
are computed as:

zj =
D − dj

D
(6)

uj(t) =
1

1 + e−
1
5 (t−15)

(7)

wj = zjuj(t) (8)

∑
j

wj = 1 (9)

We define dj to be the distance of node j from node i and D is
the distance of the farthest node from node i, that is, we have
dj ≤ D. The time portion uj(t) of the weights wj is calculated
using a non-linear sigmoid function, which approximates the
time contribution to the weight with a range between 0 and 1.

In our setting, for uj(t), a node whose CAM’s AoI is ≥ 15
seconds contributes largely to the p(∆(t))neighbors.

Algorithm 1 Compute p(∆(t))neighbors

1: Input A⃗ ← [∆ (t)1 , . . . ,∆(t)i ,∆(t)N ] (AoI of each
node), P⃗ ← [p1 (∆ (t)) , . . . , pi (∆ (t)) , pN (∆ (t))]
(Penalty AoI of each node), D⃗ ← [d1, . . . , di, dN ] (dis-
tances to each node)

2: Output p(∆(t))neighbors
3: procedure COMPUTE GENERAL PAOI(A⃗, D⃗, P⃗ )
4: W⃗ ← [w1, . . . , wi, wN ]
5: for ∆(t)i , di, wi in A⃗, D⃗, W⃗ do
6: wi ← Compute node weights using Eq. 6, Eq. 7

and Eq. 8.
7: end for
8: W⃗ ← Normalize weights using Eq. 9
9: p(∆(t))← 0

10: for wi, pi (∆ (t)) in W⃗ , P⃗ do
11: p(∆(t))neighbors ← p(∆(t)) + wipi (∆ (t))
12: end for
13: Return p(∆(t))neighbors
14: end procedure

The adaptive messaging control, is then a function I(t),
where 0 means CAM frequency should be reduced by a certain
step value and 1 means to increase CAM frequency; this
corresponds to increasing and decreasing the CAM sending
interval by 100 ms respectively, in our experiment.

I(t) =

{
0 if p(∆(t))score ≤ p∗(∆(t))

1 otherwise
(10)

p∗(∆(t)) = k ∈ [0,∞) (11)

The age-penalty score p(∆(t))score, thus, encodes the in-
formation on how the CAM sending frequency and network
congestion impact on the trajectory prediction quality; it mod-
els the complex relationship among sampling, scheduling, and
age of information. Noteworthy is the feasibility of applying
our adaptive messaging algorithm to a typical VANET.

IV. NUMERICAL RESULTS

A. Simulation Setting

We simulated a network of vehicles to implement our
adaptive cooperative awareness messaging model. In our sim-
ulation, we assumed a typical urban traffic environment with
streets and intersections. This is to capture several practical
driving scenarios such as changing lanes, increasing speed,
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Fig. 4. Average age-penalty comparison between ETSI standard and adaptive
messaging control model

maneuvers, and observing traffic lights. In our design, we
leveraged the SUMO traffic simulation tool to create realistic
car trajectories in VANETs. The network event simulation tool,
OMNet++, provides functionalities for routing packets within
the network, where CAMs are broadcasted and congestion is
controlled using our proposed method of adaptive messaging
decision. Our view on network congestion, is that, when
vehicles slow down and wait at a traffic light, network is
now becoming congested due to many vehicles queued at the
intersection. However, the trajectory prediction is becoming
very accurate due to the small (or zero) mobility, and our
p(∆(t))score will be low, thus the CAMs will be reduced, and
network congestion can be alleviated. When vehicles start to
move and the speed keeps increasing, a low CAM sending
frequency will cause inaccurate trajectory prediction (both
local and regarding neighbors) and then the p(∆(t))score will
increase, till crossing the threshold and the triggering CAM
frequency increases.

In a typical driving situation with moderate number of
neighbors around, network may have certain degree of conges-
tion. It is possible that p(∆(t))local is good, that is, sampling
frequency is enough for local trajectory prediction, but the
penalties of neighbor nodes might be high as some CAMs get
lost due to congestion. Since our p(∆(t))score incorporates the
impact of the neighbors’ penalties, if p(∆(t))score is higher
than the threshold, the vehicle will then send more CAMs to
compensate the loss due to moderate congestion.

B. Results and Analysis

In this section, we discuss the numerical results of applying
our method on two network sizes - a small network of
two cars and a large network of two hundred cars. These
networks represent a lightly-loaded and densely-loaded traffic
environment respectively. We compare the performance of our
adaptive messaging control model with the ETSI standard for
VANETs.

For all experiments under either small- or large-sized
network setting, we aim to evaluate performance using the
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following metrics:
a) Average age-penalty: This is a measure of the average

trajectory prediction error. It reflects the quality of predictions,
and it is the lower the better.

b) Average peak age-penalty: This is the average of all
the local-maxima of the age-penalty. It corresponds to the
highest penalty that can be possibly observed over a period
of time. Similar to the average prediction error, it is the lower
the better.

c) Packet received ratio: This is the ratio of successfully
received CAMs to the total CAMs sent between vehicles in
the network. It serves as an important indicator for congestion
of CAMs, alongside the peak age-penalty. When there is less
congestion of CAMs, the packet received ratio is higher.

The CAMs sending frequency is expressed in per-minutes
term, while the average prediction error and average peak
prediction error are both expressed in meters (for the physical
meaning of distance).

Our experiments show the relationship and correlation be-
tween the CAMs sending frequency and the trajectory predic-
tion quality, using a predefined penalty threshold p∗(∆(t)) = 6
(meters). In our experiments, we find a good controlling
parameter α ∈ [0, 1] that minimizes trajectory prediction error
and improves the CAMs messaging frequency. Fig. 4 and
Fig. 5 show the trajectory prediction quality, as a function
of the average age-penalty and average peak age-penalty
respectively, for the two cars and two hundred cars. The
horizontal axis represents the comparison between the ETSI
standard and our method using different α steps. We observed
that setting α = 0.6, our method achieves better performance
than the ETSI standard, especially for the two hundred cars
scenario, where driving safety is more critical. However, the
performance degrades for 0.1 ≤ α ≤ 0.3; this is because, the
algorithm allows a vehicle to take into account the network
congestion indication by neighbor vehicles, while giving less
attention the CAMs sampling frequency caused by its mobility
states. For α ≥ 0.7, the reverse is the case; thus, α = 0.6
serves as a trade-off between CAMs sampling frequency and
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congestion control.
Table 1 shows the results of comparing the ETSI standard

with our adaptive messaging control model, based on AoI
methodology. The significant improvement of 41.27% and
49.27% on trajectory prediction quality, as a function of
the average age-penalty for the two cars and two hundred
cars respectively, can guarantee driving safety in VANETs,
while maintaining very minimal packet loss due to network
congestion as shown by the packet received ratio in Fig. 6,
where our method achieved a success rate of 0.99 for each
network size.

From our experiments, the driving safety requirement in
VANETs, through trajectory prediction quality, becomes more
stringent with increase in the number of vehicles. This means
that large-sized networks will have lower age-penalties. An
important knowledge extract from the two-car scenario and
two-hundred car scenario is the robustness of our method to
different network sizes and vehicle mobility.

TABLE I
PERFORMANCE COMPARISON BETWEEN ETSI STANDARD AND ADAPTIVE

MESSAGING METHOD

ETSI
(2 cars)

Adaptive
(2 cars)

ETSI
(200 cars)

Adaptive
(200 cars)

Average
age-penalty 10.01 5.88 3.45 1.75

Average peak
age-penalty 21.52 18.01 13.85 9.60

Average CAMs
sent per minute 140 144 144 135

Packet received
ratio 0.96 0.99 0.99 0.99

V. CONCLUSION

In this paper, we present an innovative method to reduce
the rate of unnecessary CAM update in a typical VANET
where driving safety is critical. Our proposed adaptive mes-
saging control model satisfied our system design requirement
in achieving close-to-optimal prediction of vehicles’ trajec-
tory with low network congestion, towards enhancing driving
safety. Optimizing the trajectory prediction model to account

for road-side infrastructures and pedestrians, and to further
improve on network congestion control, is an open research
direction.
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