A DL-based estimation probability approach for
VRU collision avoidance

Ratl Parada', Rafael Corvillo? and Paolo Dini'

I Centre Tecnologic de Telecomunicacions de Catalunya (CTTC/CERCA)
Av. Carl Friedrich Gauss 7, 08860, Castelldefels, Barcelona, Spain
2Department of Computer Science, Multimedia and Telecommunications,
Universitat Oberta de Catalunya, Barcelona, 08018, Spain
{raul.parada, paolo.dini} @cttc.es, rcorvillo@uoc.edu

Abstract—Assisted/autonomous driving is nowadays a vivid
sector for both research and industry, thanks to the advances
made using artificial intelligence and the pervasive and fast
communication achieved by the Fifth generation (5G) of cellular
networks. A fully connected environment where traveling on
public roads is done with limited (or without) human intervention
may increase road safety. In this work, we present a system to
detect possible collisions among vehicles and between pedestrians
and vehicles with the final aim of reduce traffic accidents. Our
proposal is based on a trajectory prediction algorithm plus a
method to estimate the collision probability. Deep learning and
Monte Carlo algorithms are used, respectively. The promising
results open future research extensions.

Index Terms—Collision avoidance, 5G, trajectory prediction,
deep learning

I. INTRODUCTION

5G technology has the potential to revolutionize the trans-
portation industry and play a crucial role in the development
of assisted autonomous driving. The high-speed, low-latency,
and highly reliable communication capabilities of 5G networks
make them ideal for supporting the massive amounts of data
that autonomous vehicles need to process in real-time. With
5G, vehicles can communicate with each other, as well as with
road infrastructure, to improve traffic flow, avoid accidents, and
provide a safer driving experience. Additionally, SG can provide
the necessary connectivity for advanced driver assistance sys-
tems (ADAS), such as radar, cameras, and LiDAR sensors, to
work together seamlessly. The implementation of 5G in assisted
autonomous driving has the potential to bring about numerous
benefits, including increased efficiency, improved safety, and
reduced traffic congestion. Vehicular accidents are a major
public health and safety issue that affect people all over the
world. According to the World Health Organization, road traffic
accidents are the leading cause of death for people aged 15-29
and are estimated to cause 1.35 million deaths each year. In
some countries, up to 20% of road traffic deaths are pedestrians
and 2-3% are cyclists. Unfortunately, vulnerable road users
(VRUs) do not provide with sophisticated hardware devices
such as camera and LiDAR. Thereby, it can be used uniquely
geopositional data provided with most number of embedded sys-
tems. Recent works using uniquely geopositional data feeding
diverse machine learning techniques [1]. This work opens a line
of research on predicting trajectory predictions from common
information extract by regular electronic devices. Ribeiro et
al. [2] created two scenarios with SUMO. They implemented
stacked unidirectional Long Short-Term Memory’s (LSTMs).
Although they predicted 95% of the collision, the average

prediction time is above 4 seconds. According to the time
required for reaction and breaking, it is about 5 seconds, hence,
a prediction time above 4 seconds may not avoid a collision. Our
solution aims to speed up the prediction time while providing
a low precision error. Our goal is the estimation of collision
avoidance probability between two road users, reducing the
false alarms. Hence, our contribution includes the selection
of features generated by common devices, the exploration of
diverse neural network architectures to achieve a low precision
error, obtaining a reasonable f1-score metric and implement a

collision avoidance probability method.
II. COLLISION AVOIDANCE PREDICTION SYSTEM

This section presents the different phases of our work: A) data
generation, B) deep learning architecture design, C) trajectory
prediction and D) probability of collisions estimation.

A. Data Generation
We use the VEINS simulation framework (coupling the
Simulation of Urban MObility (SUMO). We extracted and
converted a neighborhood of Barcelona (Eixample) from
OpenStreetMaps. It has a total of 7,914,246 records, which
correspond to the trajectories of 9,981 vehicles among which
4,002 collisions occurred. Since trajectories are time-series data,
generated by thousands of vehicles, we created records with
trajectory windows of 20 seconds as input and the window
with the following 5 seconds as output. In addition, the data
set windowing procedure generates a test set with the final
trajectories of the vehicles belonging to the 1000 pairs with
collisions and the 1000 pairs without collisions, which have
been used to evaluate the models. We decided to use the same
number of collision and no collision cases for balancing. Each
sample contains the following attributes:
« time(s): time at a given vehicle position [1, 72000]
« vehicle id: Vehicle Identification [2, 10591]
e victim_id: Victim identification in case of collision [-1,
10548]
o shape collider: Collider vehicle type [passenger, moped,
delivery, motorcycle, bus]
 shape victim: Victim vehicle type [-1, passenger, delivery,
moped, motorcycle, bus]

o latitude: Latitude geographical position
[41.38698443730398, 41.39414143672337]
o longitude: Longitude geographical position

[2.157936523084977, 2.1675456322138467]

« speed(m/s): Vehicle velocity [0.0, 18.71895238439466]
 heading(degree): Vehicle direction [0.0002531690841852,
359.99305154630207]
o acceleration(m/s?):
5.999999656410755]
« collision: Binary result no collision and collision [0, 1]
According to [1] and after performing further analysis, we select
the attributes latitude, longitude and heading to train the models.

Vehicle acceleration [-10.0,

B. Deep Learning Architecture Design

With respect to our previous work [1], we have a larger number
of samples, hence, we can explore deep learning techniques.
For comparison, we designed and tested different deep learning
architectures:

« Simple models: The metrics of the models with GRU and
LSTM layers with different number of cells.

« Stacked model: Two LSTM vs GRU layers are added
stacked one after the other, testing different combinations
of number of units.

« Bidirectional model: With a bidirectional LSTM layer,
the network is trained with the input sequence in both
directions and the learning is concatenated.

« Encoder-decoder model: This type of architecture is used
to problems where sequence-to-sequence predictions are
made.

« Simple model with attention mechanism: An attention
mechanism allows the neuronal network to focus attention
on certain inputs and ignore others. This architecture is
composed of a simple model with a layer of attention.

We configure the models with the following parameters.

o Epochs: which refer to the number of times the entire
training set is used to train the network.

« Batch size: which is the size of the batches into which the
training set is divided.

o Optimizer: The optimizer used is the Adam algorithm,
which is an adaptive gradient descent method, and a
learning rate of 0.001 is used.

« Early stopping: this mechanism is used to stop training
when the model stops learning.

« ReduceLROnPlateau: mechanism is used to reduce the
learning speed when the model stops improving. The
specific values chosen for these parameters were deter-
mined through initial testing and adjusted to find a balance
between performance and training time.

After completing the training of each model, a series of metrics
are collected to analyze and compare the models:

« Mean Squared Error (MSE): Calculates the sum of the
square of the errors of the predicted values with respect to
the actual ones. It is used as a function of losses in training,
always seeking to minimize its value. This metric is the
most commonly used in regression problems.

« Mean Absolute Error (MAE): Calculates the difference
between the predicted and actual values, and has been used
as a metric during training.

« Execution time (s): Indicates the total time, in seconds,
that the training has lasted.

o Emissions CO;, (kg): Indicates the CO, emissions, in
kilograms, that have occurred during the execution of the
training code. We use the python library CodeCarbon to
perform this measurement [3].

C. Trajectory Prediction

For the detection of a collision, a method will be used that
calculates the intersection of the polygons of each vehicle. This
method consists of the following steps:

1) Predict the trajectory of the next 5 seconds of both vehicles.

2) Extract the predicted latitude, longitude, and direction for
the fifth second of both vehicles, since the collision occurs
in the last second of the sequence.

3) From the three previous attributes and the dimensions of
the vehicle, the points of the rectangle that contains each
vehicle are calculated.

4) Generate the polygon of each vehicle from the points
calculated in the previous step.

5) Check if the intersection of the polygons is greater than
zero, that is, v; N vy # @, where v; is the polygon of
vehicle 1, v, is the polygon of vehicle 2 and @ is the set
empty.

We executed the above steps to all 1000 pairs of vehicles that
collide and the 1000 pairs of vehicles that do not collide. From
those runs will get a confusion matrix with a total of true
positives (TP), an occurred collision was detected correctly;
false negatives (FN), an occurred collision was not detected;
false positives (FP), a non occurred collision was detected; and
true negatives (TN), a non occurred collision was not detected.
We use the fl-score to evaluate our models in which the above
metrics are involved.

D. Probability Estimation of Collisions

To calculate this probability of collision, we developed the
algorithm 1 inspired from [4]. This algorithm is a Monte Carlo
algorithm which estimates the probability of collision from the
probabilistic models of the vehicles. The algorithm represent the
probability density function (PDF) of both vehicles’ predicted
trajectories. We compute the PDF of the 5-second trajectories of
each vehicle, and then N random samples are drawn from these
PDFs and check if a collision is detected (c.f. II-C). Finally, the
collision probability is calculated by dividing the total number
of detected collisions by the total number of samples.

Algorithm 1 Probability estimation of collision between two
vehicles

Require: 5 seconds trajectory from each vehicle x, =
(laty,long;, 0y).
Ensure: Collision probability P..;;.
Peon(vi,v2) <0
for j — 1to Ndo
Xy1 « randc(Xy1, Zy1)
Xyo — randc(Xy2, Zy2)
if v; Nv, # @ then
Peoit(v1,v2) < Peo(vi,v2) + 1
end if
end for
Peon(vi,v2) <

Peon (vi,v2)
- N
return P.,;(vi,v2)

Model

[Training time(s) [Emissions CO, (kg) [Median error (second 5) (m) | Fl-score |

Simple GRU (64 cells) 6.317 0.044183 12.088 0.064

Simple LSTM (64 cells) 8314 0.058144 12.463 0.087

Stacked GRU (32-32 cells) 6.212 0.017822 12216 0.083

Stacked LSTM (32-32 cells) 147785 0.0554T1 12.224 0.035

Bidirectional (32 cells) 4785 0.008716 12.504 0.073

Encoder-decoder (32 cells) 5412 0.032157 12.188 0.055

LSTM model (32 cells) with attention mechanism (64 cells) 5.076 0.009246 11.947 0.075

TAB
emissions and F1-score

III. RESULTS AND CONCLUSIONS

This section collects all the executions using the different
neural network architectures. Unfortunately, due to space limi-
tation we cannot add all the results, only the last results will be
provided [5].
Table I summarizes the results of: training time in seconds, CO2
emission in kilograms, median error between the real position
and the prediction in meters in the fifth second to foresee and
the f1-score, from all the experimentation runs. We can observe
how the f1-score values are similar in all cases, however, both
the bidirectional and using the attention mechanism model reach
almost the 10%. In addition, those models result in a similar CO2
emission and median error. As mentioned in [2], the SUMO
environment does not simulate collisions by default. Hence,
some expected collisions might not be real. As a consequence,
the number of simulated collisions end up being much lower
than programmed. Assuming this fact, we decide to apply
the algorithm to estimate the probability of collision. Mention
that N in algorithm is user-configurable. The intuition within
the variable N is that the larger it is, more precise would be
the probability with the contrast that the algorithm will take
longer time. Since our system must predict the collisions with
a reasonable time to be useful. For instance, we cannot predict
a position 5 seconds in the future when the computation time
takes already 4 seconds. This fact will only allow a difference of
one second to react and brake in case of a possible real vehicular
situation. Thereby, N with a value of 300 balances an optimal
probability collision estimation and computation time. In this
case, the computation time is about 930 ms, resulting on 3 ms
per simulation.
Figure 1 shows the collision probabilities with N equal to
300. We can observe how an average probability of 1.997% is
obtained. We set a threshold to decide when a warning message
should send to the drivers to reduce false alarms but protecting
the drivers. The 25th percentile of the pairs of vehicles that
collide has been chosen as the threshold, that is, a probability of
1.6%. From the results shown in the Figure 1 and the threshold,
we verify that alarms will only be generated for 15.2% of the
vehicles that collide and for 8.7% of vehicles that do not collide.
We use As mentioned in [2] the SUMO environment does not
provide a collision features by default, therefore, configured
collisions might not occur resulting on a lower number of
expected collisions. This fact might have influenced the f1-score
values (c.f. Table I).
This work presented an estimation probability collision avoid-
ance system to reduce VRU accidents on 5G-equipped road
environments. We performed a large comparison of deep

E I: The median error is similar along all models. However, bidirectional and attention mechanism provides the best metrics of

learning techniques with median error in the fifth second about
12 meters predicted in 3 ms beside of above 4 seconds [2].
Although the fl-score was not the ideal, we get a good result
with the amount of data where vehicles remain static. For this
reason, we plan but no limit to increase the dataset to balance
the number of speed zero samples, optimize the programming
environment to enlarge the value of N to improve the estimation
probability and explore advanced neural network architectures.

10 o
o
8
D&
o
o o
=]
g 8

0.6

o

0.4

0z

(IEEEEEENEEODC O OC0@ O O 00O
(EEEDD D OO OORND O

0.0

ies No

Collision
Fig. 1: Boxplot of the collision probability calculated on predicted
trajectories
ACKNOWLEDGMENT

We would like to thanks to Eudald Llagostera and Adria Pons
from Fundaci6é i2CAT for the generation of the dataset from
SUMO. This work has been partially funded by the SGMED

project (H2020-No951947).
REFERENCES

[1] R. Parada, A. Aguilar, J. Alonso-Zarate, and F. Vazquez-Gallego, “Ma-
chine learning-based trajectory prediction for vru collision avoidance in
v2x environments,” in 2021 IEEE Global Communications Conference
(GLOBECOM), 2021, pp. 1-6.

B. Ribeiro, M. J. Nicolau, and A. Santos, “Using machine learning on v2x
communications data for vru collision prediction,” Sensors, vol. 23, no. 3,
2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/3/1260
V. Schmidt, K. Goyal, A. Joshi, B. Feld, L. Conell, N. Laskaris, D. Blank,
J. Wilson, S. Friedler, and S. Luccioni, “CodeCarbon: Estimate and Track
Carbon Emissions from Machine Learning Computing,” 2021.

A. Lambert, D. Gruyer, and G. Saint Pierre, “A fast monte carlo algorithm
for collision probability estimation,” in 2008 10th International Conference
on Control, Automation, Robotics and Vision, 2008, pp. 406-411.

R. Corvillo, “vehicles _collision _detector,”
https://github.com/rcorvial/vehicles _collision _detector, 2023.

(2]

(3]

(4]

(5]

