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Abstract—Network slicing has emerged as a revolutionary
solution to fifth generation (5G) network design and operation.
However, the inherent mobility of the end users introduces
important new and unexplored challenges with regard to the
network slice continuity across different administrative domains
(i.e., networks controlled by different operators). In this paper,
we introduce Network Slice Federation as a Service (NSFaaS),
a novel cloud-native orchestration framework for network slice
federation that incorporates well-defined interfaces to exchange
federated service and slice resource templates among operators.
The proposed framework is fully compliant with existing stan-
dards on network slicing and operator federations. In addition,
we have designed and deployed a cloud-native federated 5G
experimental platform to demonstrate the feasibility of the
proposed framework and assess its performance in terms of
“post-federation” slice creation.

Index Terms—Slicing, Edge Federation, NFV, Cloud-native.

I. INTRODUCTION

As we embrace the era of the fifth generation (5G) mobile
communication technology, the demand for unprecedented
connectivity and diverse service requirements has soared to
new heights. To meet these evolving needs, network slicing
has emerged as a promising solution, revolutionizing the
conventional approach to network design and operation. By
enabling the creation of multiple virtual networks tailored to
specific applications or user groups within a shared physical
infrastructure, network slicing unlocks a new level of flexibil-
ity, scalability, and efficiency in 5G and beyond networks [1].

On the other hand, the inherent mobility of users, especially
in cross-border scenarios or across different administrative
domains (e.g., in case of national roaming), introduces new
challenges to network slicing. As users traverse different
geographic regions and network domains, the exchange of
network slicing information among different network operators
becomes crucial for seamless service continuity. Ensuring
efficient information exchange poses significant challenges
due to varying network infrastructures, divergent management
systems, and differing policy enforcement mechanisms among
operators. Addressing these challenges is vital to unlock the
full potential of network slicing in facilitating seamless and
uninterrupted services for mobile users [2].

To tackle the service continuity challenges in mobile sce-
narios, slice orchestration in cloud-native networks has been
lately studied in the literature. The authors in [3] study slice

isolation and core-edge collaboration to achieve availability
and quality of service (QoS) optimization, while the authors
in [4] focus on the performance of a RAN slice subnet
by improving the virtual resource utilization. However, slice
mobility has not been considered in their approach. The
problem of re-programming and re-provisioning slices, due
to mobility events from moving end-users, is addressed in
[5]-[7]. Although these works study the dynamic nature of
slice management in the presence of mobile users, they do not
consider multiple administrative domains, while they mainly
focus on the algorithmic aspects and logic of network slice
creation. Moving towards cloud-native 5G and beyond network
topologies, the practical aspects towards slice creation become
of utmost importance.

To that end, GSMA has recently introduced the Operator
Platform (OP) concept, a key enabler for Edge Federation
[8]. The OP framework encompasses established Application
Programming Interfaces (APIs) and protocols for tasks such
as edge computing resource discovery, resource management,
and service deployment. Embracing the OP guidelines allows
network operators and service providers to efficiently develop
and implement novel edge services, ensuring seamless in-
teroperability and adherence to industry standards. However,
when it comes to network slicing federation, the progress of
OP is currently in its emerging phase with no defined slice
mechanisms or API endpoints established yet.

In this paper, motivated by the aforementioned challenges,
we introduce a novel Network Slice Federation as a Service
(NSFaaS) framework that extends the OP with network slice
federation capabilities. The proposed framework is 3GPP-
compliant (i.e., it follows the 3GPP slice management system)
and leverages existing APIs for the exchange of the slice
resource template among operators to ensure the end users’
seamless mobility. In addition, we design and deploy a cloud-
native 5G testbed to emulate realistic federated environments
and assess the “post-federation” network performance in terms
of the slice creation under various scenarios.

The structure of the paper is as follows. Section II presents
the system architecture of our work, while Section III intro-
duces the proposed framework for network slice federation.
Section IV provides the details for the deployed testbed and
the evaluation of our novel framework. Finally, Section V con-
cludes our work and provides some ideas for future research.
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Fig. 1: System architecture

II. NETWORK MODEL

Our system follows a multi-stakeholder architecture, as
illustrated in Figure 1, comprising three distinct entities: 1)
the Mobile Network Operator (MNO)', ii) the slice customer,
and iii) the end-user. The MNO owns the telco infrastructure,
where cloud-native applications and mobile network functions
(NFs) are running, along with a cloud orchestration platform
based on the OP concept with extensions, consisting of a
Slice Manager, a Service Manager, a Federation Manager,
and a Slice Federation Manager. The slice customer requests
a communication service in the form of a network slice to
meet the needs of its end-users’ specific characteristics and
requirements. The end-users represent the final consumers of
both the applications and network services and we assume that
the user’s home network is provided by the Home MNO, and
the visited network by the Visiting MNO.

The telecommunication network of each operator is divided
into network slices, with each slice customized to fulfill the
specific requirements of the end-users across various technical
domains, including the access network (AN), transport net-
work (TN), and core network (CN). It is also worth noting
that the core network slicing is facilitated by the 5G service-
based architecture, where the control plane functions, i.e.,
Access and Mobility Management Function (AMF), Session
Management Function (SMF), Policy Control Function (PCF),
Authentication Server Function (AUSF), Network Slice Selec-
tion Function (NSSF), Network Repository Function (NRF),
Unified Data Management (UDM), Unified Data Repository

IPlease note that the terms MNO and operator are used interchangeably in
this paper.

(UDR), as well as the User Plane Function (UPF), are
deployed as virtual functions. The Slice Manager with its
respective management and orchestration functions, such as
the Communication Service Management Function (CSMF),
the Network Slice Management Function (NSMF), and the
Network Slice Subnet Management Function (NSSMF) have
been defined by 3GPP, ensuring efficient resource allocation
based on the specific requirements of each slice [9].
The Service Manager is defined in the OP concept and is
responsible for service and resource provisioning within the
telco site infrastructure. In particular, the telco infrastructure
is considered a collection of multiple edge and cloud nodes
across the compute continuum, capable of hosting, executing,
and orchestrating cloud-native applications and NFs. More-
over, the Federation Manager facilitates application mobility
among MNOs through the East-West Bound Interface (EWBI)
endpoints. At its core, EWBI defines a set of resources that
can be used to define and deploy cloud-native applications.
Each of these resources plays a crucial role in specifying and
managing cloud-native applications across multiple sites.
Finally, each orchestration platform includes the newly
introduced role of this proposal, the Slice Federation Manager.
The Slice Federation Manager in Home MNO translates the
slice template (ST), which has been generated by the slice
customer request into a federated slice template (FST). The ST
can be represented as a JSON file that includes various details
about the slice, such as the slice type, slice tenant, slice ID,
slice requirements (e.g., guaranteed bit rate, latency, maximum
number of users, etc.), and slice domains (e.g., RAN, core). On
the other hand, the FST serves as a structured representation
of the ST extended with a federation field while referring to
edge sites and resources of the Visiting MNO.
Since no slice endpoints have been identified as of now,
new fields related to slicing must be included in the EWBI.
The following HTTP endpoints can enrich the EWBI of OP
under a new API resource called Slice Federation:
o POST request to create a slice federation session:
/slice/session

o GET request to read the status of the slice session:
/slice/session/{sessionID}/status

o DELETE request to delete the slice session:
/slice/session/{sessionID}

o POST request to create a slice instance:
/slice/session/{sessionID}/nsi

o GET request to read the status of the slice instance:
/slice/session/{sessionID}/nsi/{nsiID}

o PUT request to update the content of the slice instance:
/slice/session/{sessionID}/nsi/{nsiID}

o DELETE request to delete the slice instance:
/slice/session/{sessionID}/nsi/{nsiID}

These endpoints can serve to initiate customer requests for
slice creations to another MNO. Based on the service level
agreements (SLAs), this request is forwarded to the Visiting
Slice Federation Manager, which uses the FST to translate it
back to an ST and then forward it again to the Visiting Slice
Controller to create a network slice instance (NSI).



III. NSFAAS: NETWORK SLICE FEDERATION AS A
SERVICE MECHANISM

In this section, we introduce the technical details for the
implementation of the Network Slice Federation as a Service
(NSFaaS) mechanism, along with the slice federation phases.

A. NSFaaS technical implementation

To leverage the existing Edge Federation approach by OP
and initiate slice federation resource requests, we propose the
encapsulation of the introduced API requests in an NSFaaS
mechanism. This involves the federation of a novel application,
named SliceFedRequest, which carries the FST and specifies
the slice customer’s requirements. The FST encompasses the
slice type, the QoS parameters, the network functions, the
resource allocation, and session details.

Our framework adopts a cloud-native approach, deploy-
ing the application as a containerized microservice on a
cloud-native environment, utilizing technologies and tools like
Docker?, Kubernetes® and Helm Charts*. First, a Docker image
is captured from the application. A Docker image serves as
a self-contained package that encapsulates all the necessary
components and dependencies of an application. Then, a con-
tainer is an instance of a container image running in isolation,
providing a lightweight and consistent runtime environment.
Kubernetes acts as an orchestration platform, automating the
deployment, scaling, and management of containers across a
cluster of machines. It ensures high availability, scalability,
and fault tolerance for applications. Helm Charts, on the other
hand, serve as a packaging format for Kubernetes resources
and their configurations, simplifying the management and
deployment of complex applications and services.

Furthermore, during the federation setup, the Visiting MNO
shares a Kubernetes cluster at an edge site to accommodate
the SliceFedRequest. In addition to the edge site, the Visiting
MNO must also share clusters hosting the core and RAN NFs
for the slice.

It is also worth noting that the SliceFedRequest has been
designed based on the Kubernetes container lifecycle hooks’
and liveness probes®. Container lifecycle hooks in Kubernetes
provide a way to run specific commands or scripts at various
stages of a container’s lifecycle. These hooks allow us to
perform certain actions before or after important events in the
container’s lifecycle, such as starting or stopping the container.
We leverage the following two hooks:

1) PostStart: This hook is executed immediately after a
container is started. It enables performing actions or
configurations that should happen after the container has
started, such as requesting a slice federation session and
the federated slice instance. The data of this request
contain the FST.

Zhttps://docs.docker.com/

3https://kubernetes.io/docs/

“https://helm.sh/docs/

Shttps://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/

Shttps://kubernetes.io/docs/tasks/configure-pod-container/configure-
liveness-readiness-startup-probes/

2) PreStop: This hook is executed immediately before a
container is stopped. It provides an opportunity to grace-
fully terminate processes, close connections, or perform
any necessary cleanup tasks before the container is
terminated, such as deleting the federated slice instance
and the slice federation session.

Liveness probes is a mechanism to determine the health
status of a container running within a Pod (pod is the smallest
and most basic unit of deployment in Kubernetes). A liveness
probe periodically checks the container’s health by sending a
request to a specified endpoint and analyzing the response.

The purpose of a liveness probe in the NSFaaS mechanism
is to ensure that the Visiting Slice Federation Manager is run-
ning correctly, to read the status of the federated slice, and to
take action if it becomes unresponsive or enters a faulty state.
If the liveness probe fails (i.e., the Slice Federation Manager
does not respond within a specified timeframe or returns error
status), Kubernetes takes action based on the configured probe
settings. The type of the liveness probe used is the Exec Probe,
which executes a status command to Visiting Slice Federation
Manager and saves the command’s response. The response
then is read by the Home Slice Federation Manager to keep
the synchronization with the Visiting MNO.

By using these container lifecycle hooks and liveness
probes, we customize the behavior of the SliceFedRequest
application and ensure proper slice federation initialization,
cleanup, and availability processes as part of their lifecycle
management.

B. Slice federation phases

When all the building blocks from the OP, the 3GPP
management slice functions and the proposed innovations
come into play, the network slice federation process involves
five phases, described as follows:

1) Phase 1: Slice Federation Pre-registration

It is assumed that a slice for a user or a group of users
has been already created in the Home MNO. CSMF
and NSMF have been involved in translating customer
slice requests into slice requirements. Updates of the
NFs and applications involved, and the status of the
slice are always reported back to Slice Manager from
the subslice domain controllers. The Slice Federation
Manager constantly gets and updates its state by retriev-
ing the slice instance and translating it into a federated
slice template. It leverages a Slice Manager interface to
request the status of the user’s slice. The status includes
information on subslice domains, slice requirements, and
specific NFs associated with the slice. The flow of these
actions is depicted in Figure 2 (steps 1-3).
2) Phase 2: Slice Federation Setup

The federation establishment shall be performed to setup
the federation relationship between the two MNO or-
chestration platforms. Steps 4-9 in Figure 2 show the
actions needed to establish the federation and exchange
infrastructure and network slice-related information be-
tween the MNOs, such as the edge site that will host the
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SliceFedRequest and the endpoints of the Visiting Slice
Federation Manager, respectively.

3) Phase 3: SliceFedRequest Application Onboarding
and Deployment
To onboard the SliceFedRequest, files (e.g., Docker
images) must be first uploaded into a public/private
registry, then the artefacts referencing these files (e.g.,
helm charts with their respective Kubernetes manifests
like Deployments and ConfigfMaps) and, finally, onboard
the application that will reference the artefacts. With the
application onboarded, the application can be installed
in an edge site (e.g., Kubernetes cluster), as depicted by

steps 10-11 of Figure 2, and it will start to run, triggering
the federated slice request.

4) Phase 4: Federated Slice Deployment
After the deployment of the SliceFedRequest, a federated
slice request is sent to the Visiting MNO’s Slice Federa-
tion Manager (Fig. 3). The FST is translated back to ST,
and the slice deployment begins through the respective
domain NSSMF on the infrastructure of the Visiting
MNO. The SliceFedRequest periodically gets the status
of the federated slice request and, if it is accepted, the
Home Slice Federation Manager updates its content for
the federated slice instance. Finally, the Network Slice
Manager of the Visiting MNO has all the pieces to
deploy the federated slice to serve the user.

5) Phase 5: Slice Federation Termination
When the federated slice is no longer needed, the Home
MNO through the EWBI uninstalls the SliceFedRequest.
This action triggers a DELETE request to undeploy and
destroy the federated slices. Finally, when all resources
related to slice federation have been cleaned-up, the
federation session is released.

The above steps outline the process of network slice feder-
ation, demonstrating the role of the Slice Federation Manager
and the flow of information between the various components
involved.



Edge-cloud infra Home MNO

Edge-node ’

(=) (=) (3] (o] [roroee]
Cloud-node
5G core CP functions [ iPerf Server ] [Prometheus] [Grafana]
A

| Slice Federation/Service Manager |

NearbyOne Orchestration Platform
Home MNO

| Federation Manager |
A

Register Federation Rggi§ter
Home Establish " Visiting
Partner stablishmen Partner

A4
| Federation Manager |

NearbyOne Orchestration Platform
Visiting MNO

| Slice Federation/Service Manager |

Edge-node ’

(=) (5=) (3] (o] [rorome]
Cloud-node
5G core CP functions [ iPerf Server ] [Prometheus] [Grafana]

Fig. 4: Cloud-native 5G experimental platform

Edge-cloud infra Visiting MNO

IV. PERFORMANCE EVALUATION

In this section, we first describe the setup of the environment
employed in our experiments and, then, we evaluate the “post-
federation” network performance.

A. Experimental setup

We have designed and deployed a cloud-native 5G exper-
imental platform to evaluate the federation and assess the
impact of post-federation slice deployments on the Visiting
MNQO’s infrastructure and end-user performance. The archi-
tecture of the platform is depicted in Figure 4, including two
MNGOs, i.e., the Home MNO and the Visiting MNO, each
with an orchestration platform and an edge-cloud infrastruc-
ture for slice federation and slice deployments, respectively.
The NearbyOne Controller [10] serves as the orchestration
platform, facilitating the federation between the operators by
establishing EWBI for seamless communication between the
two operators.

Within the compute infrastructure of each operator, there is
a Kubernetes cluster with two nodes: the edge-node and the
cloud-node. The cloud-node hosts the Open5Gs control func-
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tions (i.e., AMF, SMF, PCF, AUSF, NRF, NSSF, UDM, and
UDR), a Prometheus server’, and Grafana® for 5G core con-
nectivity, monitoring, and visualization purposes, respectively.
On the other hand, the edge-node is responsible for running the
UPF, an emulated gNB and a UE from the UERANSIM open-
source project, as well as an iPerf server’. This distributed
setup allows for realistic network condition simulation, RAN
emulation with UERANSIM, comprehensive monitoring and
analysis of testbed performance with Prometheus and Grafana,
and throughput measurement and analysis with iPerf-server
and UE as iPerf-client, respectively. The testbed parameters
are summarized in Table I.

TABLE I: Testbed parameters

Value
RKE

Parameter
Kubernetes Cluster Type
CPU (Cores)
RAM (GB)
Number of Nodes
Number of Slices
Number of UEs

B B 1| 0of &

5G’s modular architecture allows network slicing to serve
distinct services for UEs. In this study, five slice scenarios
(Table II), each varying in NF sharing and slice-specific
features, were explored using the Open5Gs setup.

B. Experimental Results

Figure 5 shows the slice deployment time for the five
different scenarios, for two distinct cases for the location of the
core NF images: Cloud and Local. It is worth noting that the
deployment duration includes tasks such as NF installations,
re-configurations, and establishment of connections. Starting
from the Cloud case, in Scenario 1, where all NFs are exclusive
to each slice and hence they need to be deployed from scratch,

"https://github.com/prometheus-community/helm-charts
Shttps://github.com/grafana/helm-charts
“https://iperf.fr/



TABLE II: Slice deployment scenarios

Scenario Name | Shared NFs | Slice-specific NFs | NF Deployments NF Reconfigurations
Scenario 1 - All 5G NFs All 5G NFs -
Scenario 2 All 5G NFs - - AMF, NSSF, SMF, UPF
Scenario 3 5G CP NFs UPF UPF AME, NSSF, SMF
Scenario 4 5G CP NFs UPF, SMF UPE, SMF AMEF, NSSF
Scenario 5 5G CP NFs UPF, SMF, AMF UPF, SMF, AMF NSSF
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Fig. 6: Number of network functions in the slice scenarios

the slice takes approximately 27 s to be deployed. Scenarios
2 (all NF shared) and 3 (control NF shared and slice-specific
UPF) record average deployment times of 19.4 s and 21.9
s, respectively. Scenarios 4 and 5 adopt mixed strategies,
deploying in about 4 s each. For the Local case, the times
are lower, however the same behavior among the different
scenarios is observed. The results in Figure 5 highlight also the
trade-off between slice deployment time and the strategy of NF
sharing and isolation. Moreove, local hosting of the container
images can accelerate the slice deployment, but they come a
the cost of increased storage demands.

Figure 6 illustrates the relationship between the number of
new NFs (left y-axis/solid lines) and re-configurations (right
y-axis/dashed lines) for different number of slices across the
five scenarios. As it can be observed, as the number of
slices increases, the total number of deployments and re-
configurations increases, but with different ratio (deployments
vs. re-configurations) per scenario. This outcome is quite
important, since fresh deployments may offer isolation and
easy termination, however they require extra resources. On the
contrary, NF re-configurations minimize resource demands but
may risk service disruptions and configuration errors.

V. CONCLUSION

In this paper, we presented a novel framework for slice
federation between operators in cloud-native 5G networks,
aligning with the OP concept and the 3GPP service slice
model architecture. The proposed framework could guide the
network operators for the exchange of slice information and

the deployment of network slices in scenarios where different
administrative domains (e.g., cross-border) are involved. As
a next step, we are planning to extend our work considering
up-to-date RAN architectures.
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