
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/369643061

The unscented genetic algorithm for fast solution of GA-hard optimization

problems

Article  in  Applied Soft Computing · March 2023

DOI: 10.1016/j.asoc.2023.110260

CITATIONS

2
READS

35

1 author:

Anton Aguilar-Rivera

CTTC Catalan Telecommunications Technology Centre

11 PUBLICATIONS   183 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Anton Aguilar-Rivera on 22 May 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/369643061_The_unscented_genetic_algorithm_for_fast_solution_of_GA-hard_optimization_problems?enrichId=rgreq-65aa62db9ebfc5e27d37fbaea5e7dbce-XXX&enrichSource=Y292ZXJQYWdlOzM2OTY0MzA2MTtBUzoxMTQzMTI4MTE2MDQ1MjUxN0AxNjg0NzQ4Mjc5MDA4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/369643061_The_unscented_genetic_algorithm_for_fast_solution_of_GA-hard_optimization_problems?enrichId=rgreq-65aa62db9ebfc5e27d37fbaea5e7dbce-XXX&enrichSource=Y292ZXJQYWdlOzM2OTY0MzA2MTtBUzoxMTQzMTI4MTE2MDQ1MjUxN0AxNjg0NzQ4Mjc5MDA4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-65aa62db9ebfc5e27d37fbaea5e7dbce-XXX&enrichSource=Y292ZXJQYWdlOzM2OTY0MzA2MTtBUzoxMTQzMTI4MTE2MDQ1MjUxN0AxNjg0NzQ4Mjc5MDA4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anton-Aguilar-Rivera?enrichId=rgreq-65aa62db9ebfc5e27d37fbaea5e7dbce-XXX&enrichSource=Y292ZXJQYWdlOzM2OTY0MzA2MTtBUzoxMTQzMTI4MTE2MDQ1MjUxN0AxNjg0NzQ4Mjc5MDA4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anton-Aguilar-Rivera?enrichId=rgreq-65aa62db9ebfc5e27d37fbaea5e7dbce-XXX&enrichSource=Y292ZXJQYWdlOzM2OTY0MzA2MTtBUzoxMTQzMTI4MTE2MDQ1MjUxN0AxNjg0NzQ4Mjc5MDA4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/CTTC_Catalan_Telecommunications_Technology_Centre?enrichId=rgreq-65aa62db9ebfc5e27d37fbaea5e7dbce-XXX&enrichSource=Y292ZXJQYWdlOzM2OTY0MzA2MTtBUzoxMTQzMTI4MTE2MDQ1MjUxN0AxNjg0NzQ4Mjc5MDA4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anton-Aguilar-Rivera?enrichId=rgreq-65aa62db9ebfc5e27d37fbaea5e7dbce-XXX&enrichSource=Y292ZXJQYWdlOzM2OTY0MzA2MTtBUzoxMTQzMTI4MTE2MDQ1MjUxN0AxNjg0NzQ4Mjc5MDA4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anton-Aguilar-Rivera?enrichId=rgreq-65aa62db9ebfc5e27d37fbaea5e7dbce-XXX&enrichSource=Y292ZXJQYWdlOzM2OTY0MzA2MTtBUzoxMTQzMTI4MTE2MDQ1MjUxN0AxNjg0NzQ4Mjc5MDA4&el=1_x_10&_esc=publicationCoverPdf


Highlights

The Unscented Genetic Algorithm for Fast Solution of GA-Hard
Optimization Problems

Anton Aguilar-Rivera

• A novel competent evolutionary algorithm is proposed based on un-
scented Kalman filter theory.

• The proposed approach attained better performance than other com-
petent evolutionary algorithms for increasing problem sizes.



The Unscented Genetic Algorithm for Fast Solution of

GA-Hard Optimization Problems

Anton Aguilar-Riveraa

aCentre Tecnològic de Telecomunicacions de Catalunya (CTTC) Sustainable AI Research
Unit , Parc Mediterrani de la Tecnologia (PMT), Building B4, Av. Carl Friedrich Gauss

7, Castelldefels, 08860, Catalunya, Spain

Abstract

This work introduces the Unscented Genetic Algorithm (U-GA), which com-
bines ideas from evolutionary computation and Kalman filters to devise a
novel approach to solve GA-hard problems. The approach is justified based
on how other Bayesian methods make strong assumptions on data, which
could limit their performance in the long run. U-GA applies theory from
unscented Kalman filters to relax this assumptions via Monte-Carlo simula-
tion. The algorithm is explained in detail, showing how unscented Kalman
filters equations could be adapted for the evolutionary computation frame-
work. In the experiments, the proposed approach is compared to Bayesian
optimization algorithm (BOA) and genetic algorithms (GAs) to investigate
the strengths and limitations of U-GA. The results show how U-GA attains
better performance than the benchmarks, even when the problem size is in-
creased. Also U-GA attained a considerable speed-up (around 400%) when
compared with similar methods.

Keywords: Competent evolutionary algorithms, Unscented Kalman filters

1. Introduction

Genetic algorithms are methods inspired by both genetics and Darwinian
evolution. They have been mainly used for optimization where traditional
approaches usually struggled. For example, it has been reported in the liter-
ature the success of GAs for combinatorial optimization [1], network design

Email address: aaguilar@cttc.es (Anton Aguilar-Rivera)

Preprint submitted to Applied Soft Computing May 22, 2023



[2], identification of the flux linkage map of permanent magnet synchronous
machines [3], and others.

GAs solve a problem by processing a set of possible solutions that are
encoded in the form or binary strings. In this context, each solution repre-
sents individuals from a population that compete with each other to prevail
in future generations. Individuals are selected based on their fitness using an
objective function. Then they are combined with each other using genetic
operators, like crossover and mutation, to obtain the final offspring. Several
variations of these operators could be found in the literature [4]. Repetition
of this cycle (i.e. a generation) is expected to lead the population towards
optimal solutions.

Although the potential of GAs was clearly reported in the literature, an
explanation about their inner workings remained elusive. It was not clear
why that particular combination of operations (i.e. selection, crossover, and
mutation) could guide the search towards global optima even under adverse
conditions like non-linearity or noise [5]. Further research was made about
defining GA-hard problems, introducing the concepts of building blocks (i.e.
schema)[6], deception [7], and linkage [8]. It was concluded GAs worked
assembling building blocks and that linked, deceptive problems were the ones
that could be considered GA-hard.

1.1. GA-hard Problems

Competent GAs are the ones that can solve GA-hard problems quickly,
reliably and accurately, and GA-hard problems are the ones where deception
and linkage are present [9]. Understanding the inner working of GAs is
based on the concept of building blocks. GAs work on solutions encoded
into binary strings, identifying those bits combinations that contribute to
increase fitness values (assuming maximization). Then, they are passed to
the next generation with higher probability than the rest of individuals. The
success of GAs could be explained from the fact they process all the building
blocks contained into a single binary string at the same time, speeding-up
the search. This is known as implicit parallelism.

In this sense, GAs perform decomposition of the problem to find the good
building blocks that will be later assembled together to conform the optimal
solution [9]. Therefore, a GA-hard problem is the one where the solution is
composed by building blocks that are hard to find. Deception refers to the
case where the objective function leads the search consistently away from
the optimum. Figure 1 shows an example of this kind of problem. On the

2



Figure 1: The figure shows and example of fully deceptive problem. Trap function with
string length b = 4 and k = 0.25. The optimum is 1111, but the problem leads the algorithm
towards 0000.

other hand, linkage refers to the case where the bits that form one building
block are split along the string, making hard for the GA to decompose the
problem properly. Both conditions prevent GAs to find good building blocks
efficiently.

1.2. Competent GAs

We can find different approaches to tackle GA-hard problems in the liter-
ature. Goldberg an Ohsawa [9] mentioned three groups: Perturbation tech-
niques, linkage adaptation techniques, and estimation of distribution tech-
niques (EDAs). Besides, in the literature has been also reported model iden-
tification techniques [10]. The Fast Messy GA (fmGA) is an example a com-
petent GA using perturbation techniques, while the Linkage Learning GA
(LLGA) applies linkage adaptation; the Bayesian Optimization Algorithm
(BOA) is probably the most known EDA, which implements a Bayesian net-
work to model the population.

In general, all the approaches mentioned above understand traditional
genetic operators disrupt the formation of linked building blocks, and propose
solutions to preserve them along generations.

1.3. Revisiting the Bayesian Approach

The objective of this work is introducing a new type of EDA. Assuming
normality, we could represent the population’s bit distribution using

3



µ = [µ0, µ1,⋯, µm] , (1)

and

Σ =
⎡⎢⎢⎢⎢⎢⎣

σ00 σ01 ⋯ σ0m

⋮ ⋮ ⋮ ⋮
σm0 σm1 ⋯ σmm

⎤⎥⎥⎥⎥⎥⎦
, (2)

where µ is a vector with the mean of each variable and Σ is the co-variance
matrix. In EDAs, this distribution is sampled to create the next genera-
tion. This allows discovering new individuals that preserve the relationships
between bits while avoiding linkage problems.

BOA [11] (and hBOA [12]) use a Bayesian network to model relations
between bits. A new Bayesian network is created each generation. The
network is built based on maximization of some metric. One possibility is
using the Bayesian Dirichlet metric [11]:

p (D,B∣ξ) = p (B∣ξ)∏n−1
i=0 ∏πxi

Γ(m′(πXi))
Γ(m(πXi)+m′(πXi)) .

∏πxi

Γ(m(xi,πXi)+m′(xi,πXi))
Γ(m′(xi,πXi)) .

(3)

Equation 3 computes the probability the current population D fits the net-
work. p (D,B∣ξ) represents the probability described by the network, which
was created given prior information ξ. Here = p (B∣ξ) represents the prior
distribution, which is represented by the network created the last generation.
m(πXi) is the number of instances inD where the parents of bitXi are instan-
tiated to the combination ΠXi

. m (xi, πXi)) denotes the number of instances
where a specific combination of ΠXi

has set Xi. Besides, m(⋅) and m′(⋅) refer
the current and the past network, respectively. This equation makes a com-
parison between B and the last network B′. When B is able to cover more
instances of D, p(D,B∣ξ) will be increased. The best network maximizes
p(D,B∣ξ). Once B is defined, it is sampled to obtain the next generation of
individuals. Besides using a Bayesian network to represent data, equation 3
performs a belief update, which incorporates the information gathered from
the selection process about the optimum.

1.4. Room to new Bayesian EDAs

Although, even when BOA has proved to be successful in solving GA-
hard problems, there is still room for improvement. We recall the Bayes’

4



theorem equation:

P (R∣S) = P (S∣R)P (R)
P (S)

, (4)

where P (R) which is the prior distribution, and P (R∣S) is the posterior
distribution, which incorporates information from past beliefs and current
data. P (S) could be treated as a normalization factor without the loss of
generality. P (S∣R) represents the likelihood S is represented by R. The fact
the posterior probability is increased or decreased by the information in S
depends of the ratio P (S∣R)

P (S) .
This work’s hypothesis is based on the fact equation 3 is only an approx-

imation to equation 4 [13]. The approximation comes at the moment we
assume data is truly generated by a Bayesian network, following a Dirichlet
distribution. Besides, in the beginning of the run, an initial network struc-
ture (normally a non-connected set of nodes) should be assumed as well to
start the optimization process, even when no information is available at the
moment. These assumptions have allowed the development of algorithms
like BOA, but if a Bayesian EDA could be devised without relying on these
conditions, this new algorithm could be a better realization of equation 4
and possibly attain better performance than other EDAs.

One second improvement opportunity comes from the fact BOA requires
high computation power to work. It is reported in the literature building
Bayesian networks are a NP-hard problem [13], making unfeasible performing
a full optimization process to search the best Bayesian network for each
generation. This occurs because the algorithm must search and evaluate all
the feasible candidates to find the new network, and perform this operation
at each generation. Therefore, a method with the ability to implement the
Bayesian approach without using Bayesian networks should speed-up over-all
computation.

Based on this analysis, this work introduces Unscented Genetic Algo-
rithms (U-GAs), which combines Kalman filters to GAs to implement a new
Bayesian EDA. A description of U-GA is presented in section 2. Experiments
are found in section 3 and the results are discussed in section 4. Section 5 is
the conclusion. Final work is described on section 6.

2. Unscented Genetic Algorithms (U-GAs)

U-GAs are an implementation of Bayes’ theorem based on Kalman filters
(KFs) [14]. Kalman filter is a recursive algorithm that implements Bayes’

5



theorem and it is used for estimation of noisy data, forecasting, smoothing,
estimation of unobserved variables, and other applications. In general, KFs
perform two basic operations: prediction of prior distribution, and update
of the prior distribution with information from data to obtain the posterior
distribution. In the context of KFs, prediction is implemented with the
following equations:

µ̄ = Fµ +Bw (5)

Σ̄ = FΣF T +Q (6)

and update operation is described by

y = z −Hµ̄ (7)

K = Σ̄HT (HΣ̄HT +R)−1 (8)

µ = µ̄ +Ky (9)

Σ = (I −KH) Σ̄ (10)

where µ and Σ were already introduced in equations 1 and 2. In equations 5
and 6, F is called the transition matrix, which usually holds a set differential
equations that models the evolution of the system state with time. w models
manipulations to the system, andB maps this manipulation to system states.
These equations deal with prediction of the prior distribution.

Equations 7 to 10 describe the update operation. z represents data and
y is the difference between data and the value predicted by equation 5. K is
know as the Kalman gain. Equations 9 and 10 update both µ and Σ given
the likelihood of data and uncertainty’s of the state. Q and R represent our
estimation of uncertainty in the model and in the measurements, respectively.

2.1. Prediction in U-GAs

Any algorithm implementing equation 4 must perform both prediction
and update operations. The problem is that in GAs we have not a definition
of the matrices used in KFs. Although, in the case of prediction, we could
assume the selection operator is naturally moving the population towards the
optimum. Then, we could express this assumption in the following equation:

S (popt)∝ F (popt) , (11)

where S represents the selection operator and F is a function applying F to
the equivalent system represented by the population at time t. Under this

6



assumption, we can see the objective function provides information about
the population dynamics and state transition occurs when the algorithm
performs selection. The same assumption was used to explain the inner
workings of BOA in subsection 1.3.

Therefore, we can implement equations 5 and 6 with

m10 = sgn (sgn (fDs − fD′) + 1) , (12)

m01 = 1 −m10, (13)

D =Ds ⊙m10 +D′ ⊙m01, (14)

fD = fDs ⊙m10 + fD′ ⊙m01. (15)

Equations 12 to 15 represent tournament selection. We are assuming maxi-
mization without the loss of generality. D and D′ are the current and past
generation’s populations, respectively, while Ds is a new sample population
used for the tournament. m10 and m01 are masks that can be either 0 or 1,
depending on which individual has better fitness values. fD, fDs , and fD′ are
the vectors with the fitness values of individuals in each sample. Operator ⊙
represents element-wise multiplication.

2.2. Update in U-GAs

In a similar manner, fitness values could be regarded as measurements,
and this information could be incorporated to obtain the posterior distri-
bution (i.e. equations 1 and 2). To achieve this task we can recall to the
update version of unscented Kalman filters (UKFs) [15][16]. In UKFs, a
Monte-Carlo approach is used to compute the prediction and update oper-
ations, but it uses a carefully chosen set of points (i.e. sigma points) that
guarantees a good parameters estimation while using very few values. This
approach was chosen because it naturally allows computing K from a set of
points, which is well suited for evolutionary algorithms. Update operation
in UKFs is implemented in the following equations [15][16]:

Z = h (Y) (16)

Pxz =∑ (wcX − µ) (Z − µz) (17)

K = PxzP
−1
z (18)

7



µ̄ = µx +Ky (19)

Σ̄ =ΣPzΣ
T (20)

Where X denote the sigma points used by UKFs. Y are the measurements,
while Z is their transformation to the states-space. P is used here to denote
cross-covariance. In the case of U-GAs, individuals could be used as sigma
points, and we could combine equations 16, 17, 18 and re-write them to be

K = 1

nbσ2
f

1 (X −µx)T f . (21)

In equation 21, X is being used as a short-hand to refer to the population. µx

denotes a vector with the mean values for each column of µx. f is a vector
with fitness values. n and b refers to population size and bit-string length,
respectively, while σ2

f is the population’s fitness variance. 1 is a vector of
ones of suitable size to allow the computation. In the end, K is a scalar.

2.3. U-GA Implementation

U-GA keeps information of the population’s distribution in µ and Σ. The
population X is sampled from a normal multi-variate distribution:

X ∼ N (µ,Σ) . (22)

And then it is converted to bits using

X b =
sgn (X −µ) + 1

2
. (23)

Equation 23 assigns 1 to those values above the mean and 0 otherwise. Both
prediction and update operations described above are applied to X instead
of X b. Although, X b is used for evaluation.

Implementation of U-GA is shown in figure 2. The input arguments are
the objective function obj fun, number of generations m, number of individ-
uals n, and string length b. Both µ and Σ can be initialized to uninformed
states. The algorithm’s loop is not different from the one found in regular
GAs. The population is generated from the distribution defined by µ and
Σ using equations 22 and 23. Then, the population X b is evaluated using
the objective function. PREDICT() implements the procedure described in

8



Figure 2: U-GA Flow Diagram.

subsection 2.1, which uses tournament selection to find the new state of µ
and Σ. UPDATE() implements the procedure described in subsection 2.2,
which applies equations 16 to 20 update µ and Σ with the data from new
evaluations. Finally, the algorithm returns µ and Σ with its estimation of
the posterior distribution.

The optimal solution x⋆ and its fitness f⋆ is computed from the final
population X using the COMPUTE SOL() function. This function takes
an average of each bit and evaluates the resulting individual. µ, Σ could
be regarded as metrics of the certainty the algorithm has about the result.
Other criteria could be implemented as well.

9



3. Description of Experiments

Benchmark functions were taken from the literature [17] [18] to test the
proposed approach. Five of them were chosen to be included in this article.
In table 1 below, the names and properties of these functions are described.
The problems could be classified whether they are (or are not) continuous,
differentiable, separable, scalable and unimodal. The problems were chosen
to explore the performance of algorithms under different conditions. It is
expected non-separable problems to be the hardest ones because of linkage.

Other evolutionary algorithms are considered in the experiments for com-
parison purposes. BOA was chosen because both U-GA and BOA work under
similar principles. Also, a regular GA was chosen because it is expected to
be the lower bound in performance. Any competent evolutionary algorithm
must perform significantly better than a regular GA for hard problems.

All three algorithms were run with the following setup: m = 100, n = 200,
and b = 16. Only Dixon-Price problem was run using also b = 24 (more details
in section 4). In the experiments, the data of 100 runs were collected for each
algorithm.

Problem Continuous Differentiable Separable Scalable Unimodal

One-max No No Yes Yes Yes
Dixon-Price Yes Yes No Yes Yes
Schwefel 1.2 Yes Yes No Yes Yes

Stepint No No Yes Yes Yes
Type-1 Dec. No No No Yes No
Type-2 Dec. No No No Yes No

Table 1: Properties of benchmark functions used in the experiments.

4. Results

The results are shown in figures 6 to 11 and in table 2. The figures
are presented in pairs. The first one shows the RMS error between the
population’s fitness mean and the optimum result of the problem. This
is possible because the optimal solutions of all the benchmarks are known
beforehand. They are obtained by aggregation of 100 runs. Also, this figure
shows the evolution of fitness with time. The second figure shows a box plot
of the speed-up attained by U-GA and GA in relation to BOA. BOA was

10



chosen as the benchmark because the other algorithms were faster. Speed-up
is computed in the following manner:

speed-up() = tnew
told
× 100% (24)

Times were chosen to show speed-up because all three algorithms are of
order O(n). Therefore the difference in running time should be caused by
other steps in the algorithms. For example, the construction of the Bayesian
network seems to be the main cause of time-consumption in BOA to the point
it could be not considered negligible. One of the advantages of using relative
comparison metric like the one shown in equation 24 is the division cancels the
effect of similar conditions applied during the runs (e.g. specific hardware
used). Therefore speed-ups seemed a suitable way to report performance
when comparing disparate algorithms or computer architectures.

In table 2, the final mean and standard deviation of RMS between pop-
ulation fitness and the optimum is reported in the form mean/standard de-
viation. The results of 100 runs were aggregated to compute these values.

In table 2 we can see the convergence of all the algorithms. We can
see both U-GA and BOA were able to solve the benchmarks, while GA
struggled. This result is expected and in clearly shows the proposed approach
is better than a regular GA. No increments of n or b were needed for further
clarification.

We can observe the final mean and standard deviation of BOA for Dixon-
Price-16 problems are better than U-GA’s but the situation reverses for the
24-bits case. In general, it was observed that for small values of b (e.g. b ≈ 8)
there was not significant difference between the convergence power of BOA
and U-GA, but the performance of BOA degrades with increasing values of
b. In figures 6, 8, 10, and 11, we can see U-GA was able to find the optimum
faster than BOA.

One interesting result is shown in figure 11. This problem is a pair of
concatenated traps as the one shown in figure 1. We can see a clear difference
in performance between U-GA and BOA. The solution could be increasing
the number of individuals, and the number of generations to allow BOA
having more information to process, but in the end, this would lead to a
slower performance because BOA would require more evaluations than U-GA
to find the optimum. We can see in the box plots the median in speed-up
is around 500%. In this sense, we could say U-GA dominates BOA when

11



considering both RMS and speed-up for the performed experiments. This
trend is clearer for the type-2 deceptive problem case.

Another point to be discussed in regards the results is it could be ob-
served both U-GA and BOA performed better for discontinuous problems
than continuous ones. This could be explained because both algorithms are
designed to work with bit strings. Therefore, a mechanism to perform con-
tinuous optimization would be needed to increase performance. Different
solutions could be found in the literature [19].

Finally, the box plots in figures 6 to 11 shows both GA and U-GA are
faster than BOA. GA is proven to be fastest one , because is the most simple
algorithm, but even BOA was able to attain speed-ups up to 3000% in the
experiments. Also, GA could be tuned up to run for longer numbers of
generations and individuals, but in the end, this would have negative impact
on performance. It seems the results show both U-GA and BOA outperform
a GA for hard problems.

Problem U-GA BOA GA
One-Max 0/0 0/0 0.194/0.0378

Dixon-Price-16 0.146/0.149 0.026/0.036 724.533/458.2763
Dixon-Price-24 0.131/0.119 0.322/0.262 804.502/415.498
Schwefel-1.2 0.154/0 0.166/0.067 138.731/77.204

Stepint 0/0 0/0 0.316/0.071
Type-1 Deceptive 0/0 0.089/0.029 0.0418/0.032
Type-2 Deceptive 0/0 0.529/0.022 0.028/0.006

Table 2: Final Averages and Standard Deviations of RMS Values for Studied Algorithms
and Benchmarks.

U-GA’s behavior is further analyzed in figures 3, 4, and 5; where some
examples of the evolution of µ and Σ along the algorithm execution are
shown. The plots were obtained computing the average RMS of the elements
in those matrices. The plots show how the RMS values stabilize themselves
along the run, showing the convergence of the population towards the optimal
solution.

5. Conclusion

This work introduced U-GA, a competent evolutionary algorithm based
on UKFs. The introduction made a brief discussion about hard-GA problems

12



Figure 3: Convergence of U-GA Example.

13



Figure 4: Convergence of U-GA Example (Detail).

14



Figure 5: Convergence of U-GA Example.

Figure 6: Results for one-max problem.

15



Figure 7: Results for Dixon & Price problem (16-bits).

Figure 8: Results for Dixon & Price problem (24-bits).

16



Figure 9: Results for Schwefel 1.2 Problem.

Figure 10: Results for Stepint Problem.

17



Figure 11: Results for Type-1 Deceptive Problem.

Figure 12: Results for Type-2 Deceptive Problem.

18



and their relation to deception and linkage. Unscented Kalman filters were a
good starting point to create U-GA because it naturally integrates Kalman
filtering theory with Monte-Carlo methods, a combination that could be
easily extended to evolutionary algorithms.

U-GA was tested using different benchmark problems proposed in the lit-
erature and compared using other evolutionary algorithms (GA and BOA).
It was shown it could be outperform a regular GA at tackling hard problems
and it could attain better results than BOA for larger problems. It seems
BOA would require larger populations and generations to attain better re-
sults.

The difference in performance could be explained based on the idea some
EDAs (e.g. BOA) make strong assumptions about the distribution of data.
For example, Bayesian networks assume a Dirichlet distribution. On the
other hand, UKFs approach was devised to overcome these restriction, al-
lowing KFs to be applied to non-linear problems applying Monte-Carlo meth-
ods. Although, we were not able to find a completely agnostic method in
regards of probability distributions, U-GA represent and advancement in this
direction, which could be the subject of further research.

6. Future Work

We could further inquire on the performance of U-GA considering it is
fundamentally based on UKFs. It is known UKFs perform better than regu-
lar KFs for non-linear problems, but even UKFs would struggle to track very
fast moving objects (e.g. a fighter jet). Therefore it could be expected U-GA
to struggle when facing non-stationary problems. Also, other approaches
could be investigated. For example, extended KFs (EKFs) are more widely
used to deal with non-linear problems than UKFs. Also, comparison against
other type of algorithms and application to real-world problems are worth to
be explored in the future.

Finally, devising U-GA comes from the combination of two frameworks
that appear unrelated (i.e. evolutionary algorithms and KFs). It could be
interesting further combinations to create new algorithms. One of the ad-
vantages of this approach is the theoretical framework for the new algorithm
would be already created. For example, we could assume U-GA would be
competent-GA because UKFs are an already tested method. Besides, we
could take advantage of the already developed theory from the base frame-
works to justify the new method and explain its behaviour.

19



Acknowledgements

This work was made as part of the author’s research activities at Centre
Tecnològic de Telecomunicacions de Catalunya (CTTC), Sustainable Artifi-
tial Intelligence (SAI) research unit.

References

[1] C. R. Reeves, Genetic algorithms, in: Handbook of metaheuristics,
Springer, 2010, pp. 109–139.

[2] M. Tsuji, M. Munetomo, K. Akama, A network design problem by a GA
with linkage identification and recombination for overlapping building
blocks, in: Linkage in Evolutionary Computation, Springer, 2008, pp.
441–459.

[3] K. Liu, J. Feng, S. Guo, L. Xiao, Z.-Q. Zhu, Identification of flux linkage
map of permanent magnet synchronous machines under uncertain circuit
resistance and inverter nonlinearity, IEEE Transactions on Industrial
Informatics 14 (2) (2017) 556–568.

[4] A. J. Umbarkar, P. D. Sheth, Crossover operators in genetic algorithms:
a review., ICTACT journal on soft computing 6 (1) (2015).

[5] E. Cantú-Paz, Adaptive sampling for noisy problems, in: Genetic and
Evolutionary Computation Conference, Springer, 2004, pp. 947–958.

[6] J. H. Holland, et al., Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence, MIT press, 1992.

[7] D. Goldberg, Simple genetic algorithms and the minimal, deceptive
problem, Genetic Algorithms and Simulated Annealing (1987) 74–88.

[8] M. Tsuji, M. Munetomo, Linkage analysis in genetic algorithms, in:
Computational Intelligence Paradigms, Springer, 2008, pp. 251–279.

[9] D. E. Goldberg, K. Sastry, Y. Ohsawa, Discovering deep building blocks
for competent genetic algorithms using chance discovery via keygraphs,
in: Chance Discovery, Springer, 2003, pp. 276–301.

20



[10] M. Valenzuela-Rendón, Black-box optimization by deterministic identi-
fication: The BODI report, Tech. rep., BODI Report (2016).

[11] M. Pelikan, D. E. Goldberg, E. Cantú-Paz, Bayesian optimization algo-
rithm, population sizing, and time to convergence., in: GECCO, 2000,
pp. 275–282.

[12] M. Pelikan, D. E. Goldberg, Escaping hierarchical traps with competent
genetic algorithms, in: Proceedings of the 3rd Annual Conference on
Genetic and Evolutionary Computation, 2001, pp. 511–518.

[13] D. M. Chickering, D. Geiger, D. Heckerman, et al., Learning bayesian
networks is np-hard, Tech. rep., Citeseer (1994).

[14] A. Akca, M. Ö. Efe, Multiple model kalman and particle filters and
applications: a survey, IFAC-PapersOnLine 52 (3) (2019) 73–78.

[15] S. J. Julier, The scaled unscented transformation, in: Proceedings of the
2002 American Control Conference (IEEE Cat. No. CH37301), Vol. 6,
IEEE, 2002, pp. 4555–4559.

[16] R. Labbe, Kalman and bayesian filters on python,
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

(2020).

[17] M. Jamil, X.-S. Yang, A literature survey of benchmark functions for
global optimization problems, arXiv preprint arXiv:1308.4008 (2013).

[18] A. R. Al-Roomi, Unconstrained Single-Objective Benchmark Functions
Repository (2015).
URL https://www.al-roomi.org/benchmarks/unconstrained

[19] A. Agapie, M. Agapie, G. Zbaganu, Evolutionary algorithms for
continuous-space optimisation, International journal of systems science
44 (3) (2013) 502–512.

21

View publication stats

https://www.researchgate.net/publication/369643061

